Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 119(5): 3418-3451, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30444609

RESUMEN

This review article examines the current state of understanding in how metal halide perovskite solar cells can degrade when exposed to moisture, oxygen, heat, light, mechanical stress, and reverse bias. It also highlights strategies for improving stability, such as tuning the composition of the perovskite, introducing hydrophobic coatings, replacing metal electrodes with carbon or transparent conducting oxides, and packaging. The article concludes with recommendations on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.

2.
J Am Chem Soc ; 139(32): 11117-11124, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28704048

RESUMEN

Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

3.
Science ; 354(6314): 861-865, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27856902

RESUMEN

We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable "all-perovskite" thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

4.
ACS Appl Mater Interfaces ; 8(39): 25896-25904, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27604192

RESUMEN

The active layers of perovskite solar cells are also structural layers and are central to ensuring that the structural integrity of the device is maintained over its operational lifetime. Our work evaluating the fracture energies of conventional and inverted solution-processed MAPbI3 perovskite solar cells has revealed that the MAPbI3 perovskite exhibits a fracture resistance of only ∼0.5 J/m2, while solar cells containing fullerene electron transport layers fracture at even lower values, below ∼0.25 J/m2. To address this weakness, a novel styrene-functionalized fullerene derivative, MPMIC60, has been developed as a replacement for the fragile PC61BM and C60 transport layers. MPMIC60 can be transformed into a solvent-resistant material through curing at 250 °C. As-deposited films of MPMIC60 exhibit a marked 10-fold enhancement in fracture resistance over PC61BM and a 14-fold enhancement over C60. Conventional-geometry perovskite solar cells utilizing cured films of MPMIC60 showed a significant, 205% improvement in fracture resistance while exhibiting only a 7% drop in PCE (13.8% vs 14.8% PCE) in comparison to the C60 control, enabling larger VOC and JSC values. Inverted cells fabricated with MPMIC60 exhibited a 438% improvement in fracture resistance with only a 6% reduction in PCE (12.3% vs 13.1%) in comparison to those utilizing PC61BM, again producing a higher JSC.

5.
Nat Commun ; 7: 11683, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216703

RESUMEN

Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.


Asunto(s)
Compuestos de Calcio/efectos de la radiación , Yoduros/efectos de la radiación , Óxidos/efectos de la radiación , Titanio/efectos de la radiación , Compuestos de Calcio/química , Yoduros/química , Yodo/química , Yodo/efectos de la radiación , Plomo/química , Plomo/efectos de la radiación , Luz , Mediciones Luminiscentes/métodos , Metilaminas/química , Metilaminas/efectos de la radiación , Microscopía Confocal/métodos , Óxidos/química , Espectrometría de Masa de Ion Secundario/métodos , Titanio/química
6.
ACS Appl Mater Interfaces ; 8(9): 5981-9, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26859777

RESUMEN

Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

7.
Adv Mater ; 28(20): 3937-43, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26880196

RESUMEN

A sputtered oxide layer enabled by a solution-processed oxide nanoparticle buffer layer to protect underlying layers is used to make semi-transparent perovskite solar cells. Single-junction semi-transparent cells are 12.3% efficient, and mechanically stacked tandems on silicon solar cells are 18.0% efficient. The semi-transparent perovskite solar cell has a T 80 lifetime of 124 h when operated at the maximum power point at 100 °C without additional sealing in ambient atmosphere under visible illumination.

8.
J Phys Chem Lett ; 7(5): 746-51, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26863290

RESUMEN

A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly efficient low cost double-junction solar cells on crystalline Si. Solution-processable organic-inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and though it is possible to tune the bandgap of (CH3NH3)Pb(BrxI1-x)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photoinduced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV.


Asunto(s)
Compuestos de Calcio/química , Cesio/química , Halógenos/química , Plomo/química , Óxidos/química , Energía Solar , Titanio/química , Difracción de Rayos X
9.
J Am Chem Soc ; 137(49): 15451-9, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26579724

RESUMEN

Despite rapid developments in both photovoltaic and light-emitting device performance, the understanding of the optoelectronic properties of hybrid lead halide perovskites is still incomplete. In particular, the polarizability of the material, the presence of molecular dipoles, and their influence on the dynamics of the photoexcitations remain an open issue to be clarified. Here, we investigate the effect of an applied external electric field on the photoexcited species of CH3NH3PbI3 thin films, both at room temperature and at low temperature, by monitoring the photoluminescence (PL) yield and PL decays. At room temperature we find evidence for electric-field-induced reduction of radiative bimolecular carrier recombination together with motion of charged defects that affects the nonradiative decay rate of the photoexcited species. At low temperature (190 K), we observe a field-induced enhancement of radiative free carrier recombination rates that lasts even after the removal of the field. We assign this to field-induced alignment of the molecular dipoles, which reduces the vibrational freedom of the lattice and the associated local screening and hence results in a stronger electron-hole interaction.

10.
J Phys Chem Lett ; 6(12): 2399-405, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26266623

RESUMEN

Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.

11.
ACS Nano ; 9(9): 9380-93, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26247197

RESUMEN

Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.

12.
J Phys Chem Lett ; 6(9): 1666-73, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-26263331

RESUMEN

Organic-inorganic halide perovskite solar cells have recently emerged as high-performance photovoltaic devices with low cost, promising for affordable large-scale energy production, with laboratory cells already exceeding 20% power conversion efficiency (PCE). To date, a relatively expensive organic hole-conducting molecule with low conductivity, namely spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'- spirobifluorene), is employed widely to achieve highly efficient perovskite solar cells. Here, we report that by replacing spiro-OMeTAD with much cheaper and highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) we can achieve PCE of up to 14.5%, with PEDOT cast from a toluene based ink. However, the stabilized power output of the PEDOT-based devices is only 6.6%, in comparison to 9.4% for the spiro-OMeTAD-based cells. We deduce that accelerated recombination is the cause for this lower stabilized power output and postulate that reduced levels of p-doping are required to match the stabilized performance of Spiro-OMeTAD. The entirely of the materials employed in the perovskite solar cell are now available at commodity scale and extremely inexpensive.

13.
Adv Mater ; 27(39): 5889-94, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26308374

RESUMEN

Dye-sensitized TiO2 can be used as the active layer of solar-cell devices without an additional hole-transporting material. In this architecture, holes are transported through the dye monolayer.

14.
Nano Lett ; 14(10): 5561-8, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25226226

RESUMEN

Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Power conversion efficiencies have experienced an unprecedented increase to reported values exceeding 19% within just four years. With the focus mainly on efficiency, the aspect of stability has so far not been thoroughly addressed. In this paper, we identify thermal stability as a fundamental weak point of perovskite solar cells, and demonstrate an elegant approach to mitigating thermal degradation by replacing the organic hole transport material with polymer-functionalized single-walled carbon nanotubes (SWNTs) embedded in an insulating polymer matrix. With this composite structure, we achieve JV scanned power-conversion efficiencies of up to 15.3% with an average efficiency of 10 ± 2%. Moreover, we observe strong retardation in thermal degradation as compared to cells employing state-of-the-art organic hole-transporting materials. In addition, the resistance to water ingress is remarkably enhanced. These are critical developments for achieving long-term stability of high-efficiency perovskite solar cells.

15.
ACS Nano ; 8(7): 7147-55, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24949826

RESUMEN

Solution-processed organometal trihalide perovskite solar cells are attracting increasing interest, leading to high performances over 15% in thin film architectures. Here, we probe the presence of sub gap states in both solid and mesosuperstructured perovskite films and determine that they strongly influence the photoconductivity response and splitting of the quasi-Fermi levels in films and solar cells. We find that while the planar perovskite films are superior to the mesosuperstructured films in terms of charge carrier mobility (in excess of 20 cm(2) V(-1) s(-1)) and emissivity, the planar heterojunction solar cells are limited in photovoltage by the presence of sub gap states and low intrinsic doping densities.

16.
Adv Mater ; 26(24): 4013-30, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24729301

RESUMEN

The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms.

17.
J Phys Chem Lett ; 5(8): 1421-6, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-26269988

RESUMEN

The study of the photophysical properties of organic-metallic lead halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photogeneration and recombination mechanism and unravels their potential for other optoelectronic applications. We report surprisingly high photoluminescence (PL) quantum efficiencies, up to 70%, in these solution-processed crystalline films. We find that photoexcitation in the pristine CH3NH3PbI3-xClx perovskite results in free charge carrier formation within 1 ps and that these free charge carriers undergo bimolecular recombination on time scales of 10s to 100s of ns. To exemplify the high luminescence yield of the CH3NH3PbI3-xClx perovskite, we construct and demonstrate the operation of an optically pumped vertical cavity laser comprising a layer of perovskite between a dielectric mirror and evaporated gold top mirrors. These long carrier lifetimes together with exceptionally high luminescence yield are unprecedented in such simply prepared inorganic semiconductors, and we note that these properties are ideally suited for photovoltaic diode operation.

18.
J Phys Chem Lett ; 5(9): 1511-5, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26270088

RESUMEN

Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.

19.
J Phys Chem Lett ; 5(7): 1096-102, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-26274455

RESUMEN

Emerging from the field of dye-sensitized solar cells, organometal halide perovskite-based solar cells have recently attracted considerable attention. In these devices, the perovskite light absorbers can also be used as charge transporting materials, changing the requirements for efficient device architectures. The perovskite deposition can vary from merely sensitizing the TiO2 electron transporting scaffold as an endowment of small nanoparticles, to completely filling the pores where it acts as both light absorber and hole transporting material in one. By decreasing the TiO2 scaffold layer thickness, we change the solar cell architecture from perovskite-sensitized to completely perovskite-filled. We find that the latter case leads to improvements in device performance because higher electron densities can be sustained in the TiO2, improving electron transport rates and photovoltage. Importantly, the primary recombination pathway between the TiO2 and the hole transporting material is blocked by the perovskite itself. This understanding helps to rationalize the high voltages attainable on mesoporous TiO2-based perovskite solar cells.

20.
J Phys Chem Lett ; 5(23): 4207-12, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26278955

RESUMEN

Here, we report the use of polymer-wrapped carbon nanotubes as a means to enhance charge extraction through undoped spiro-OMeTAD. With this approach a good solar cell performance is achieved without the implementation of conventional doping methods. We demonstrate that a stratified two-layer architecture of sequentially deposited layers of carbon nanotubes and spiro-OMeTAD, outperforms a conventional blend of the hole-conductor and the carbon nanotubes. We also provide insights into the mechanism of the rapid hole extraction observed in the two-layer approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...