Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(1): nwad138, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38116089

RESUMEN

New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 m above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.

2.
Anal Chem ; 95(32): 11879-11884, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37528801

RESUMEN

Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for measuring organic trace gases in air. In traditional PTR-MS, both nonpolar and polar analytes are ionized with unit efficiency, as predicted from ion-molecule collision theories. This well-defined ion chemistry allows for direct quantification of analytes without prior calibration and therefore is an important characteristic of PTR-MS. In an effort to further increase the sensitivity, recently developed ultrahigh sensitivity chemical ionization mass spectrometry (CIMS) analyzers have, however, been reported to have sacrificed unit ionization efficiency for selected analytes or classes of analytes. We herein report on the development of a novel ultrasensitive PTR-MS instrument, the FUSION PTR-TOF 10k, which exhibits the same universal unit response as conventional PTR-MS analyzers. The core component of this analyzer is the newly designed FUSION ion-molecule reactor, which is a stack of concentric ring electrodes generating a static longitudinal electric field superimposed by a focusing transversal radiofrequency (RF) field. The FUSION PTR-TOF 10k instrument is equipped with an improved ion source, capable of switching between different reagent ions (H3O+, O2+, NO+, NH4+) in less than one second. The improved time-of-flight mass spectrometer analyzes m/z signals with a mass resolution in the 10000-15000 range. FUSION PTR-TOF 10k achieves sensitivities up to 80000 cps ppbV-1 and detection limits down to 0.5 pptV for a 1 s measurement time. We show time-series of naphthalene and 13C-napthalene as measured in ambient air in Innsbruck for demonstrating the sub-pptV detection capability of this novel FUSION PTR-TOF 10k.

3.
Sci Rep ; 9(1): 20089, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882936

RESUMEN

In most organisms, the concentration of free Zn2+ is controlled by metallothioneins (MTs). In contrast, no significant proportions of Zn2+ are bound to MTs in the slug, Arion vulgaris. Instead, this species possesses cytoplasmic low-molecular-weight Zn2+ (LMW Zn) binding compound that divert these metal ions into pathways uncoupled from MT metabolism. Zn2+ is accumulated in the midgut gland calcium cells of Arion vulgaris, where they associate with a low-molecular-weight ligand with an apparent molecular mass of ~ 2,000 Da. Mass spectrometry of the semi-purified LMW Zn binding compound combining an electrospray ion source with a differential mobility analyser coupled to a time-of-flight mass spectrometer revealed the presence of four Zn2+-containing ion signals, which arise from disintegration of one higher MW complex resulting in an ion-mobility diameter of 1.62 nm and a molecular mass of 837 Da. We expect that the novel Zn2+ ion storage pathway may be shared by many other gastropods, and particularly species that possess Cd-selective MT isoforms or variants with only very low affinity to Zn2+.


Asunto(s)
Gastrópodos/metabolismo , Zinc/metabolismo , Animales , Cadmio/metabolismo , Cobre/metabolismo , Ligandos , Espectrometría de Masa por Ionización de Electrospray
4.
Environ Sci Technol ; 53(21): 12357-12365, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31553886

RESUMEN

We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature. This is because the positive temperature dependence of degree of oxidation (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior work that relied on estimated volatility, we directly measure volatility via calibrated temperature-programmed desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of materials in the condensed phase. We now have consistency between measured gas-phase product concentrations, product volatility, measured and modeled growth rates, and the particle composition over most temperatures found in the troposphere.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , Volatilización
5.
Proc Natl Acad Sci U S A ; 115(37): 9122-9127, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154167

RESUMEN

Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [Formula: see text]C to [Formula: see text]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.

6.
Nature ; 533(7604): 527-31, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225126

RESUMEN

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

7.
Nat Commun ; 7: 11594, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27197574

RESUMEN

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

8.
Environ Sci Technol ; 48(23): 13675-84, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25406110

RESUMEN

We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.


Asunto(s)
Amoníaco/química , Dimetilaminas/química , Espectrometría de Masas/métodos , Ácidos Sulfúricos/química , Aerosoles/química , Álcalis/química , Presión Atmosférica , Iones/química , Espectrometría de Masas/instrumentación
9.
Proc Natl Acad Sci U S A ; 111(42): 15019-24, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288761

RESUMEN

For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

10.
Nature ; 502(7471): 359-63, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24097350

RESUMEN

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.


Asunto(s)
Aminas/química , Atmósfera/química , Material Particulado/química , Ácidos Sulfúricos/química , Radiación Cósmica , Dimetilaminas/química , Efecto Invernadero , Actividades Humanas , Modelos Químicos , Teoría Cuántica , Dióxido de Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...