Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499653

RESUMEN

A prevalent view in treating age-dependent disorders including Alzheimer's disease (AD) is that the underlying amyloid plaque pathology must be targeted for cognitive improvements. In contrast, we report here that repeated scanning ultrasound (SUS) treatment at 1 MHz frequency can ameliorate memory deficits in the APP23 mouse model of AD without reducing amyloid-ß (Aß) burden. Different from previous studies that had shown Aß clearance as a consequence of blood-brain barrier (BBB) opening, here, the BBB was not opened as no microbubbles were used. Quantitative SWATH proteomics and functional magnetic resonance imaging revealed that ultrasound induced long-lasting functional changes that correlate with the improvement in memory. Intriguingly, the treatment was more effective at a higher frequency (1 MHz) than at a frequency within the range currently explored in clinical trials in AD patients (286 kHz). Together, our data suggest frequency-dependent bio-effects of ultrasound and a dissociation of cognitive improvement and Aß clearance, with important implications for the design of trials for AD therapies.

2.
Bioeng Transl Med ; 8(1): e10329, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684089

RESUMEN

Transcranial scanning ultrasound combined with intravenously injected microbubbles (SUS+MB) has been shown to transiently open the blood-brain barrier and reduce the amyloid-ß (Aß) pathology in the APP23 mouse model of Alzheimer's disease (AD). This has been accomplished through the activation of microglial cells; however, their response to the SUS treatment is incompletely understood. Here, wild-type (WT) and APP23 mice were subjected to SUS+MB, using nonsonicated mice as sham controls. After 48 h, the APP23 mice were injected with methoxy-XO4 to label Aß aggregates, followed by microglial isolation into XO4+ and XO4- populations using flow cytometry. Both XO4+ and XO4- cells were subjected to RNA sequencing and transcriptome profiling. The analysis of the microglial cells revealed a clear segregation depending on genotype (AD model vs. WT mice) and Aß internalization (XO4+ vs. XO4- microglia), but interestingly, no differences were found between SUS+MB and sham in WT mice. Differential gene expression analysis in APP23 mice detected 278 genes that were significantly changed by SUS+MB in the XO4+ cells (248 up/30 down) and 242 in XO- cells (225 up/17 down). Pathway analysis highlighted differential expression of genes related to the phagosome pathway and marked upregulation of cell cycle-related transcripts in XO4+ and XO4- microglia isolated from SUS+MB-treated APP23 mice. Together, this highlights the complexity of the microglial response to transcranial ultrasound, with potential applications for the treatment of AD.

3.
Theranostics ; 12(16): 6826-6847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276649

RESUMEN

Rationale: The blood-brain barrier (BBB) is a major impediment to therapeutic intracranial drug delivery for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). Focused ultrasound applied together with microbubbles (FUS+MB) is a novel technique to transiently open the BBB and increase drug delivery. Evidence suggests that FUS+MB is safe, however, the effects of FUS+MB on human BBB cells, especially in the context of AD, remain sparsely investigated. In addition, there currently are no cell platforms to test for FUS+MB-mediated drug delivery. Methods: Here we generated BBB cells (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) from apolipoprotein E gene allele E4 (APOE4, high sporadic AD risk) and allele E3 (APOE3, lower AD risk) carrying patient-derived induced pluripotent stem cells (iPSCs). We established mono- and co-culture models of human sporadic AD and control BBB cells to investigate the effects of FUS+MB on BBB cell phenotype and to screen for the delivery of two potentially therapeutic AD antibodies, an Aducanumab-analogue (AduhelmTM; anti-amyloid-ß) and a novel anti-Tau antibody, RNF5. We then developed a novel hydrogel-based 2.5D BBB model as a step towards a more physiologically relevant FUS+MB drug delivery platform. Results: When compared to untreated cells, the delivery of Aducanumab-analogue and RNF5 was significantly increased (up to 1.73 fold), across the Transwell-based BBB models following FUS+MB treatment. Our results also demonstrated the safety of FUS+MB indicated by minimal changes in iBEC transcriptome as well as little or no changes in iBEC or iAstrocyte viability and inflammatory responses within the first 24 h post FUS+MB. Furthermore, we demonstrated successful iBEC barrier formation in our novel 2.5D hydrogel-based BBB model with significantly increased delivery (1.4 fold) of Aducanumab-analogue following FUS+MB. Conclusion: Our results demonstrate a robust and reproducible approach to utilize patient cells for FUS+MB-mediated drug delivery screening in vitro. With such a cell platform for FUS+MB research previously not reported, it has the potential to identify novel FUS+MB-deliverable drugs as well as screen for cell- and patient-specific effects of FUS+MB, accelerating the use of FUS+MB as a therapeutic modality in AD.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales Humanizados , Barrera Hematoencefálica , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/fisiología , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles , Microburbujas , Anticuerpos Monoclonales Humanizados/administración & dosificación
4.
Theranostics ; 12(5): 1952-1970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265192

RESUMEN

Rationale: The blood-brain barrier (BBB) while functioning as a gatekeeper of the brain, impedes cerebral drug delivery. An emerging technology to overcome this limitation is focused ultrasound (FUS). When FUS interacts with intravenously injected microbubbles (FUS+MB), the BBB opens, transiently allowing the access of therapeutic agents into the brain. However, the ultrasound parameters need to be tightly tuned: when the acoustic pressure is too low there is no opening, and when it is too high, tissue damage can occur. We therefore asked whether barrier permeability can be increased by combining FUS+MB with a second modality such that in a clinical setting lower acoustic pressures could be used. Methods: Given that FUS+MB achieves BBB opening in part by disruption of tight junction (TJ) proteins such as claudin-5 of brain endothelial cells, we generated a stable MDCK (Madin-Darby Canine Kidney) II cell line (eGFP-hCldn5-MDCK II) that expresses fluorescently tagged human claudin-5. Two claudin-5 binders, the peptide mC5C2 and cCPEm (truncated form of an enterotoxin), reported previously to weaken the barrier, were synthesized and assessed for their abilities to enhance the permeability of cellular monolayers. We then performed a comparative analysis of single and combination treatments, measuring transendothelial electrical resistance (TEER) and cargo leakage, combined with confocal image analysis. Results: We successfully generated a novel cell line that formed functional monolayers as validated by an increased TEER reading and a low (< 0.2%) permeability to sodium fluorescein (376 Da). We found that the binders exerted a time- and concentration-dependent effect on barrier opening when incubated over an extended period, whereas FUS+MB caused a rapid opening followed by recovery after 12 hours within the tested pressure range. Importantly, preincubation with cCPEm prior to FUS+MB treatment resulted in greater barrier opening compared to either FUS+MB or cCPEm alone as measured by reduced TEER values and an increased permeability to fluorescently labelled 40 kDa dextran (FD40). Conclusion: The data suggest that pre incubation with clinically suitable binders to TJ proteins may be a general strategy to facilitate safer and more effective ultrasound-mediated BBB opening in cellular and animal systems and potentially also for the treatment of human diseases of the brain.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/metabolismo , Claudina-5/farmacología , Perros , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/metabolismo , Microburbujas
5.
Alzheimers Res Ther ; 13(1): 76, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836798

RESUMEN

BACKGROUND: Aducanumab is an anti-amyloid-ß (Aß) antibody that achieved reduced amyloid pathology in Alzheimer's disease (AD) trials; however, it is controversial whether it also improved cognition, which has been suggested would require a sufficiently high cumulative dose of the antibody in the brain. Therapeutic ultrasound, in contrast, has only begun to be investigated in human AD clinical trials. We have previously shown that scanning ultrasound in combination with intravenously injected microbubbles (SUS), which temporarily and safely opens the blood-brain barrier (BBB), removes amyloid and restores cognition in APP23 mice. However, there has been no direct testing of how the effects of SUS compare to immunotherapy or whether a combination therapy is more effective. METHODS: In a study comprising four treatment arms, we tested the efficacy of an Aducanumab analog, Adu, both in comparison to SUS, and as a combination therapy, in APP23 mice (aged 13-22 months), using sham as a control. The active place avoidance (APA) test was used to test spatial memory, and histology and ELISA were used to measure amyloid. Brain antibody levels were also determined. RESULTS: We found that both Adu and SUS reduced the total plaque area in the hippocampus with no additive effect observed with the combination treatment (SUS + Adu). Whereas in the cortex where there was a trend towards reducing the total plaque area from either Adu or SUS, only the combination treatment yielded a statistically significant decrease in total plaque area compared to sham. Only the SUS and SUS + Adu groups included animals that had their plaque load reduced to below 1% from above 10%. There was a robust improvement in spatial memory for the SUS + Adu group only, and in this group the level of Adu, when measured 3 days post-treatment, was 5-fold higher compared to those mice that received Adu on its own. Together, these findings suggest that SUS should be considered as a treatment option for AD. Alternatively, a combination trial using Aducanumab together with ultrasound to increase brain levels of the antibody may be warranted.


Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Placa Amiloide/tratamiento farmacológico
6.
J Vis Exp ; (161)2020 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-32744519

RESUMEN

Only a small fraction of therapeutic antibodies targeting brain diseases are taken up by the brain. Focused ultrasound offers a possibility to increase uptake of antibodies and engagement through transient opening of the blood-brain barrier (BBB). In our laboratory, we are developing therapeutic approaches for neurodegenerative diseases in which an antibody in various formats is delivered across the BBB using microbubbles, concomitant with focused ultrasound application through the skull targeting multiple spots, an approach we refer to as scanning ultrasound (SUS). The mechanical effects of microbubbles and ultrasound on blood vessels increases paracellular transport across the BBB by transiently separating tight junctions and enhances vesicle- mediated transcytosis, allowing antibodies and therapeutic agents to effectively cross. Moreover, ultrasound also facilitates the uptake of antibodies from the interstitial brain into brain cells such as neurons where the antibody distributes throughout the cell body and even into neuritic processes. In our studies, fluorescently labeled antibodies are prepared, mixed with in-house prepared lipid-based microbubbles and injected into mice immediately before SUS is applied to the brain. The increased antibody concentration in the brain is then quantified. To account for alterations in normal brain homeostasis, microglial phagocytosis can be used as a cellular marker. The generated data suggest that ultrasound delivery of antibodies is an attractive approach to treat neurodegenerative diseases.


Asunto(s)
Anticuerpos/administración & dosificación , Sistemas de Liberación de Medicamentos , Microburbujas , Animales , Barrera Hematoencefálica , Técnica del Anticuerpo Fluorescente , Ratones , Uniones Estrechas , Ondas Ultrasónicas
7.
Brain Res Bull ; 153: 8-14, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400496

RESUMEN

A major challenge in treating brain diseases is presented by the blood-brain barrier (BBB) that constitutes an efficient barrier not only for toxins but also a wide range of therapeutic agents. In overcoming this impediment, ultrasound in combination with intravenously injected microbubbles has emerged as a powerful technology that allows for the selective brain uptake of blood-borne factors and therapeutic agents by transient opening of the blood-brain barrier. We have previously shown that ultrasound in combination with microbubbles, but in the absence of a therapeutic agent, can effectively clear protein aggregates such as the hallmark lesions of Alzheimer's disease, amyloid-ß (Aß) plaques and Tau-containing neurofibrillary tangles. We have also demonstrated that the associated memory and motor impairments can be ameliorated or even restored. These studies included a negative sham control that received microbubbles in the absence of ultrasound. However, considering that ultrasound on its own is a pressure wave which has bioeffects, the possibility remained that ultrasound, without microbubbles, would also clear amyloid. We addressed this by performing repeated ultrasound only treatments of one brain hemisphere of Aß-depositing APP23 mice, using the contralateral hemisphere as the unsonicated control. This was followed by an extensive histological analysis of fibrillar and non-fibrillar amyloid. We found that ultrasound on its own was not sufficient to clear amyloid. This implies that although ultrasound on its own has neuromodulatory effects, exogenously supplied microbubbles are required for the clearance of Aß deposits.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Placa Amiloide/terapia , Terapia por Ultrasonido/métodos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microburbujas/uso terapéutico , Placa Amiloide/patología
8.
Theranostics ; 9(13): 3754-3767, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281511

RESUMEN

Intracellular deposits of pathological tau are the hallmark of a broad spectrum of neurodegenerative disorders collectively known as tauopathies, with Alzheimer's disease, a secondary tauopathy, being further characterized by extracellular amyloid plaques. A major obstacle in developing effective treatments for tauopathies is the presence of the blood-brain barrier, which restricts the access of therapeutic agents to the brain. An emerging technology to overcome this limitation is the application of low-intensity ultrasound which, together with intravenously injected microbubbles, transiently opens the blood-brain barrier, thereby facilitating the delivery of therapeutic agents into the brain. Interestingly, even in the absence of therapeutic agents, ultrasound has previously been shown to reduce amyloid plaques and improve cognitive functions in amyloid-depositing mice through microglial clearance. Ultrasound has also been shown to facilitate the delivery of antibody fragments against pathological tau in P301L tau transgenic mice; however, the effect of ultrasound alone has not been thoroughly investigated in a tauopathy mouse model. Methods: Here, we performed repeated scanning ultrasound treatments over a period of 15 weeks in K369I tau transgenic mice with an early-onset tau-related motor and memory phenotype. We used immunohistochemical and biochemical methods to analyze the effect of ultrasound on the mice and determine the underlying mechanism of action, together with an analysis of their motor and memory functions following repeated ultrasound treatments. Results: Repeated ultrasound treatments significantly reduced tau pathology in the absence of histological damage. Associated impaired motor functions showed improvement towards the end of the treatment regime, with memory functions showing a trend towards improvement. In assessing potential clearance mechanisms, we ruled out a role for ubiquitination of tau, a prerequisite for proteasomal clearance. However, the treatment regime induced the autophagy pathway in neurons as reflected by an increase in the autophagosome membrane marker LC3II and a reduction in the autophagic flux marker p62, along with a decrease of mTOR activity and an increase in beclin 1 levels. Moreover, there was a significant increase in the interaction of tau and p62 in the ultrasound-treated mice, suggesting removal of tau by autophagosomes. Conclusions: Our findings indicate that a neuronal protein aggregate clearance mechanism induced by ultrasound-mediated blood-brain barrier opening operates for tau, further supporting the potential of low-intensity ultrasound to treat neurodegenerative disorders.


Asunto(s)
Autofagia , Conducta Animal , Neuronas/metabolismo , Ultrasonografía , Proteínas tau/metabolismo , Animales , Memoria , Ratones Transgénicos , Actividad Motora , Ovillos Neurofibrilares/metabolismo , Fosforilación
9.
Sci Rep ; 9(1): 9255, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239479

RESUMEN

The microtubule-associated protein tau is an attractive therapeutic target for the treatment of Alzheimer's disease and related tauopathies as its aggregation strongly correlates with disease progression and is considered a key mediator of neuronal toxicity. Delivery of most therapeutics to the brain is, however, inefficient, due to their limited ability to cross the blood-brain barrier (BBB). Therapeutic ultrasound is an emerging non-invasive technology which transiently opens the BBB in a focused manner to allow peripherally delivered molecules to effectively enter the brain. In order to open a large area of the BBB, we developed a scanning ultrasound (SUS) approach by which ultrasound is applied in a sequential pattern across the whole brain. We have previously shown that delivery of an anti-tau antibody in a single-chain variable fragment (scFv) format to the brain is increased with SUS allowing for an enhanced therapeutic effect. Here we compared the delivery of an anti-tau antibody, RN2N, in an scFv, fragment antigen-binding (Fab) and full-sized immunoglobulin G (IgG) format, with and without sonication, into the brain of pR5 tau transgenic mice, a model of tauopathy. Our results revealed that the full-sized IgG reaches a higher concentration in the brain compared with the smaller formats by bypassing renal excretion. No differences in either the ultrasound-mediated uptake or distribution in the brain from the sonication site was observed across the different antibody formats, suggesting that ultrasound can be used to successfully increase the delivery of therapeutic molecules of various sizes into the brain for the treatment of neurological diseases.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Hipocampo/metabolismo , Sonicación/métodos , Proteínas tau/inmunología , Animales , Ratones , Ratones Transgénicos
10.
Ultrasonics ; 90: 52-62, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29909121

RESUMEN

Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull.

11.
Theranostics ; 8(9): 2583-2602, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721100

RESUMEN

Rationale: Treating diseases of the brain such as Alzheimer's disease (AD) is challenging as the blood-brain barrier (BBB) effectively restricts access of a large number of potentially useful drugs. A potential solution to this problem is presented by therapeutic ultrasound, a novel treatment modality that can achieve transient BBB opening in species including rodents, facilitated by biologically inert microbubbles that are routinely used in a clinical setting for contrast enhancement. However, in translating rodent studies to the human brain, the presence of a thick cancellous skull that both absorbs and distorts ultrasound presents a challenge. A larger animal model that is more similar to humans is therefore required in order to establish a suitable protocol and to test devices. Here we investigated whether sheep provide such a model. Methods: In a stepwise manner, we used a total of 12 sheep to establish a sonication protocol using a spherically focused transducer. This was assisted by ex vivo simulations based on CT scans to establish suitable sonication parameters. BBB opening was assessed by Evans blue staining and a range of histological tests. Results: Here we demonstrate noninvasive microbubble-mediated BBB opening through the intact sheep skull. Our non-recovery protocol allowed for BBB opening at the base of the brain, and in areas relevant for AD, including the cortex and hippocampus. Linear time-shift invariant analysis and finite element analysis simulations were used to optimize the position of the transducer and to predict the acoustic pressure and location of the focus. Conclusion: Our study establishes sheep as a novel animal model for ultrasound-mediated BBB opening and highlights opportunities and challenges in using this model. Moreover, as sheep develop an AD-like pathology with aging, they represent a large animal model that could potentially complement the use of non-human primates.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Corteza Cerebral/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Microburbujas , Modelos Animales , Ovinos , Sonicación/métodos , Terapia por Ultrasonido/métodos , Ultrasonografía/métodos
12.
Front Neurosci ; 12: 55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467614

RESUMEN

Deposition of amyloid-ß (Aß) peptide leads to amyloid plaques that together with tau deposits characterize the brains of patients with Alzheimer's disease (AD). In modeling this pathology, transgenic animals such as the APP23 strain, that expresses a mutant form of the amyloid precursor protein found in familial cases of AD, have been instrumental. In previous studies, we have shown that repeated treatments with ultrasound in a scanning mode (termed scanning ultrasound or SUS) were effective in removing Aß and restoring memory functions, without the need for a therapeutic agent such as an Aß antibody. Considering that age is the most important risk factor for AD, we extended this study in which the mice were only 12 months old at the time of treatment by assessing a cohort of 2 year-old mice. Interestingly, at this age, APP23 mice are characterized by cerebral amyloid angiopathy (CAA) and the presence of occasional microbleeds. We found that SUS in aged mice that have been exposed to four SUS sessions that were spread out over 8 weeks and analyzed 4 weeks later did not show evidence of increased CAA or microbleeds. Furthermore, amyloid was reduced as assessed by methoxy-XO4 fluorescence. In addition, plaque-associated microglia were more numerous in SUS treated mice. Together this adds to the notion that SUS may be a treatment modality for human neurodegenerative diseases.

14.
Brain ; 140(5): 1220-1230, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379300

RESUMEN

Alzheimer's disease is characterized by the deposition of amyloid-ß as extracellular plaques and hyperphosphorylated tau as intracellular neurofibrillary tangles. Tau pathology characterizes not only Alzheimer's disease, but also many other tauopathies, presenting tau as an attractive therapeutic target. Passive tau immunotherapy has been previously explored; however, because only a small fraction of peripherally delivered antibodies crosses the blood-brain barrier, enters the brain and engages with tau that forms intracellular aggregates, more efficient ways of antibody delivery and neuronal uptake are warranted. In the brain, tau exists as multiple isoforms. Here, we investigated the efficacy of a novel 2N tau isoform-specific single chain antibody fragment, RN2N, delivered by passive immunization in the P301L human tau transgenic pR5 mouse model. We demonstrate that, in treated mice, RN2N reduces anxiety-like behaviour and phosphorylation of tau at distinct sites. When administration of RN2N was combined with focused ultrasound in a scanning mode (scanning ultrasound), RN2N delivery into the brain and uptake by neurons were markedly increased, and efficacy was significantly enhanced. Our study provides evidence that scanning ultrasound is a viable tool to enhance the delivery of biologics across the blood-brain barrier and improve therapeutic outcomes and further presents single-chain antibodies as an alternative to full-length antibodies.


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/farmacología , Terapia Combinada/métodos , Tauopatías/inmunología , Tauopatías/terapia , Proteínas tau/inmunología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunización Pasiva/psicología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/inmunología , Neuronas/metabolismo , Fosforilación/inmunología , Isoformas de Proteínas/inmunología , Tauopatías/metabolismo , Terapia por Ultrasonido , Proteínas tau/genética , Proteínas tau/metabolismo
15.
PLoS One ; 11(10): e0164278, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27727310

RESUMEN

Scanning ultrasound (SUS) is a noninvasive approach that has recently been shown to ameliorate histopathological changes and restore memory functions in an Alzheimer's disease mouse model. Although no overt neuronal damage was reported, the short- and long-term effects of SUS on neuronal excitability and dendritic tree morphology had not been investigated. To address this, we performed patch-clamp recordings from hippocampal CA1 pyramidal neurons in wild-type mice 2 and 24 hours after a single SUS treatment, and one week and 3 months after six weekly SUS treatments, including sham treatments as controls. In both treatment regimes, no changes in CA1 neuronal excitability were observed in SUS-treated neurons when compared to sham-treated neurons at any time-point. For the multiple treatment groups, we also determined the dendritic morphology and spine densities of the neurons from which we had recorded. The apical trees of sham-treated neurons were reduced at the 3 month time-point when compared to one week; however, surprisingly, no longitudinal change was detected in the apical dendritic trees of SUS-treated neurons. In contrast, the length and complexity of the basal dendritic trees were not affected by SUS treatment at either time-point. The apical dendritic spine densities were reduced, independent of the treatment group, at 3 months compared to one week. Collectively, these data suggest that ultrasound can be employed to prevent an age-associated loss of dendritic structure without impairing neuronal excitability.


Asunto(s)
Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Ultrasonografía , Envejecimiento , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
16.
Nat Rev Neurol ; 12(3): 161-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26891768

RESUMEN

Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.


Asunto(s)
Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/terapia , Terapia por Ultrasonido/tendencias , Ultrasonografía Intervencional/tendencias , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Resultado del Tratamiento
17.
Sci Transl Med ; 7(278): 278ra33, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25761889

RESUMEN

Amyloid-ß (Aß) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). We present a nonpharmacological approach for removing Aß and restoring memory function in a mouse model of AD in which Aß is deposited in the brain. We used repeated scanning ultrasound (SUS) treatments of the mouse brain to remove Aß, without the need for any additional therapeutic agent such as anti-Aß antibody. Spinning disk confocal microscopy and high-resolution three-dimensional reconstruction revealed extensive internalization of Aß into the lysosomes of activated microglia in mouse brains subjected to SUS, with no concomitant increase observed in the number of microglia. Plaque burden was reduced in SUS-treated AD mice compared to sham-treated animals, and cleared plaques were observed in 75% of SUS-treated mice. Treated AD mice also displayed improved performance on three memory tasks: the Y-maze, the novel object recognition test, and the active place avoidance task. Our findings suggest that repeated SUS is useful for removing Aß in the mouse brain without causing overt damage, and should be explored further as a noninvasive method with therapeutic potential in AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Memoria/fisiología , Ultrasonido , Albúminas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Recuento de Células , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Fagocitosis , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/fisiopatología , Ultrasonografía
18.
Front Neurol ; 4: 72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23772223

RESUMEN

TAU is a microtubule-associated protein that under pathological conditions such as Alzheimer's disease (AD) forms insoluble, filamentous aggregates. When 20 years after TAU's discovery the first TAU transgenic mouse models were established, one declared goal that was achieved was the modeling of authentic TAU aggregate formation in the form of neurofibrillary tangles. However, as we review here, it has become increasingly clear that TAU causes damage much before these filamentous aggregates develop. In fact, because TAU is a scaffolding protein, increased levels and an altered subcellular localization (due to an increased insolubility and impaired clearance) result in the interaction of TAU with cellular proteins with which it would otherwise either not interact or do so to a lesser degree, thereby impairing their physiological functions. We specifically discuss the non-axonal localization of TAU, the role phosphorylation has in TAU toxicity and how TAU impairs mitochondrial functions. A major emphasis is on what we have learned from the four available TAU knock-out models in mice, and the knock-out of the TAU/MAP2 homolog PTL-1 in worms. It has been proposed that in human pathological conditions such as AD, a rare toxic TAU species exists which needs to be specifically removed to abrogate TAU's toxicity and restore neuronal functions. However, what is toxic in one context may not be in another, and simply reducing, but not fully abolishing TAU levels may be sufficient to abrogate TAU toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...