Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 7: 771, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446094

RESUMEN

Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.

2.
PLoS One ; 6(11): e27009, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073239

RESUMEN

Triglyceride accumulation is associated with obesity and type 2 diabetes. Genetic disruption of diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the final reaction of triglyceride synthesis, confers dramatic resistance to high-fat diet induced obesity. Hence, DGAT1 is considered a potential therapeutic target for treating obesity and related metabolic disorders. However, the molecular events shaping the mechanism of action of DGAT1 pharmacological inhibition have not been fully explored yet. Here, we investigate the metabolic molecular mechanisms induced in response to pharmacological inhibition of DGAT1 using a recently developed computational systems biology approach, the Causal Reasoning Engine (CRE). The CRE algorithm utilizes microarray transcriptomic data and causal statements derived from the biomedical literature to infer upstream molecular events driving these transcriptional changes. The inferred upstream events (also called hypotheses) are aggregated into biological models using a set of analytical tools that allow for evaluation and integration of the hypotheses in context of their supporting evidence. In comparison to gene ontology enrichment analysis which pointed to high-level changes in metabolic processes, the CRE results provide detailed molecular hypotheses to explain the measured transcriptional changes. CRE analysis of gene expression changes in high fat habituated rats treated with a potent and selective DGAT1 inhibitor demonstrate that the majority of transcriptomic changes support a metabolic network indicative of reversal of high fat diet effects that includes a number of molecular hypotheses such as PPARG, HNF4A and SREBPs. Finally, the CRE-generated molecular hypotheses from DGAT1 inhibitor treated rats were found to capture the major molecular characteristics of DGAT1 deficient mice, supporting a phenotype of decreased lipid and increased insulin sensitivity.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Modelos Teóricos , Algoritmos , Animales , Conducta Alimentaria , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
3.
AAPS J ; 13(4): 576-84, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21870203

RESUMEN

Sodium-glucose co-transporter-2 (SGLT2) inhibitors are an emerging class of agents for use in the treatment of type 2 diabetes mellitus (T2DM). Inhibition of SGLT2 leads to improved glycemic control through increased urinary glucose excretion (UGE). In this study, a biologically based pharmacokinetic/pharmacodynamic (PK/PD) model of SGLT2 inhibitor-mediated UGE was developed. The derived model was used to characterize the acute PK/PD relationship of the SGLT2 inhibitor, dapagliflozin, in rats. The quantitative translational pharmacology of dapagliflozin was examined through both prospective simulation and direct modeling of mean literature data obtained for dapagliflozin in healthy subjects. Prospective simulations provided time courses of UGE that were of consistent shape to clinical observations, but were modestly biased toward under prediction. Direct modeling provided an improved characterization of the data and precise parameter estimates which were reasonably consistent with those predicted from preclinical data. Overall, these results indicate that the acute clinical pharmacology of SGLT2 inhibitors in healthy subjects can be reasonably well predicted from preclinical data through rational accounting of species differences in pharmacokinetics, physiology, and SGLT2 pharmacology. Because these data can be generated at the earliest stages of drug discovery, the proposed model is useful in the design and development of novel SGLT2 inhibitors. In addition, this model is expected to serve as a useful foundation for future efforts to understand and predict the effects of SGLT2 inhibition under chronic administration and in other patient populations.


Asunto(s)
Hipoglucemiantes/farmacología , Modelos Biológicos , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos/farmacocinética , Glucósidos/farmacología , Humanos , Hipoglucemiantes/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transportador 2 de Sodio-Glucosa
4.
J Med Chem ; 54(8): 2952-60, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21449606

RESUMEN

Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It is currently in phase 2 clinical trials and is being evaluated for the treatment of type 2 diabetes.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Descubrimiento de Drogas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Área Bajo la Curva , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Ratas
5.
Bioorg Med Chem Lett ; 20(5): 1569-72, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20149653

RESUMEN

Modifications to the sugar portion of C-aryl glycoside sodium glucose transporter 2 (SGLT2) inhibitors were explored, including systematic deletion and modification of each of the glycoside hydroxyl groups. Based on results showing activity to be quite tolerant of structural change at the C-5 position, a series of novel C-5 spiro analogues was prepared. Some of these analogues exhibit low nanomolar potency versus SGLT2 and promote urinary glucose excretion (UGE) in rats. However, due to sub-optimal pharmacokinetic parameters (in particular half-life), predicted human doses did not meet criteria for further advancement.


Asunto(s)
Glicósidos/química , Hipoglucemiantes/química , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Espiro/química , Animales , Ciclización , Glicósidos/síntesis química , Glicósidos/farmacocinética , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacocinética , Masculino , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Transportador 2 de Sodio-Glucosa/metabolismo
6.
Bioorg Med Chem Lett ; 18(11): 3338-43, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18445527

RESUMEN

The P2Y(1) and P2Y(12) purinergic receptors are responsible for mediating adenosine diphosphate (ADP) dependent platelet aggregation. Evidence from P2Y(1) knockout studies as well as from nucleotide-based small molecule P2Y(1) antagonists has suggested that the antagonism of this receptor may offer a novel and effective method for the treatment of thrombotic disorders. Herein, we report the identification and optimization of a series of non-nucleotide P2Y(1) antagonists that are potent and orally bioavailable.


Asunto(s)
Fibrinolíticos/síntesis química , Fibrinolíticos/farmacología , Antagonistas del Receptor Purinérgico P2 , Adenosina Difosfato/farmacología , Administración Oral , Técnicas Químicas Combinatorias , Diseño de Fármacos , Fibrinolíticos/química , Humanos , Estructura Molecular , Agregación Plaquetaria/efectos de los fármacos , Receptores Purinérgicos P2Y1 , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...