Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(8): 1928, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857106

RESUMEN

This publisher's note contains corrections to Opt. Lett.44, 5788 (2019)OPLEDP0146-959210.1364/OL.44.005788.

2.
Opt Lett ; 44(23): 5788-5791, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774780

RESUMEN

We report on thulium-doped waveguide amplifiers integrated on a low-loss silicon nitride platform. The amplifier structure consists of a thulium-doped tellurium oxide thin film coated on a silicon nitride strip waveguide on silicon. We determine a waveguide background loss of 0.7 dB/cm at 1479 nm based on the quality factor measured in microring resonators. Gain measurements were carried out in straight and 6.7-cm-long s-bend waveguides realized on a 2.2-cm-long chip. We measure internal net gain over the wavelength range 1860-2000 nm under 1620 nm pumping and up to 7.6 dB total gain at 1870 nm, corresponding to 1.1 dB/cm. These results are promising for the realization of highly compact thulium-doped amplifiers in the emerging 2 µm band for silicon-based photonic microsystems.

3.
Opt Express ; 27(9): 12529-12540, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052793

RESUMEN

We report on high-quality tellurium oxide waveguides integrated on a low-loss silicon nitride wafer-scale platform. The waveguides consist of silicon nitride strip features, which are fabricated using a standard foundry process and a tellurium oxide coating layer that is deposited in a single post-processing step. We show that by adjusting the Si3N4 strip height and width and TeO2 layer thickness, a small mode area, small bend radius and high optical intensity overlap with the TeO2 can be obtained. We investigate transmission at 635, 980, 1310, 1550 and 2000 nm wavelengths in paperclip waveguide structures and obtain low propagation losses down to 0.6 dB/cm at 2000 nm. These results illustrate the potential for compact linear, nonlinear and active tellurite glass devices in silicon nitride photonic integrated circuits operating from the visible to mid-infrared.

4.
Opt Lett ; 44(1): 118-121, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645557

RESUMEN

We report on tellurium-oxide (TeO2)-coated silicon nitride microring resonators with internal quality factors up to 7.3×105, corresponding to 0.5 dB/cm waveguide loss, at wavelengths around 1550 nm. The microring resonators are fabricated using a silicon nitride foundry process followed by TeO2 coating deposition in a single post-processing step. The silicon nitride strip height of 0.2 µm enables a small microring bending radius, while the TeO2 coating thickness of 0.33 µm results in a large modal overlap with the TeO2 layer. These results are a promising step towards realizing compact and high-performance linear, nonlinear, and rare-earth-doped active integrated photonic devices with this platform.

5.
Biosens Bioelectron ; 106: 117-121, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29414077

RESUMEN

In order to realize the multi-analyte assays for environmental contaminants, an optical biosensor utilizing laser-induced fluorescence-based detection via the binding of biomolecules to the surface of an integrated TriPleX™ waveguide chip on a glass substrate (fused silica, FS) is described. As far as we know, this is the first demonstration of using the TriPleX™ technology to fabricate the waveguide chip on a FS substrate. The sensor consists of 32 individually addressable sensor patches, which were formed on the chip surface by exploiting 3 Y-junction splitters, creating four equal rows of eight evanescently excited windows in parallel. The basic low-loss SiO2/Si3N4 TriPleX™ waveguide configuration in combination with on-chip spotsize convertors allows for both high fiber-to-chip coupling efficiency and enables at the same time individually optimized high chip surface intensity and low patch-to-patch deviation. Moreover, the complementary metal-oxide-semiconductor compatible fabrication of waveguide chip allows for its mass production at low cost. By taking MC-LR, 2,4-D, atrazine and BPA as the model analytes, the as-proposed waveguide based biosensor was proven sensitive with the detection limits of 0.22 µg/L for MC-LR, 1.18 µg/L for 2, 4-D, 0.2 µg/L for atrazine and 0.06 µg/L for BPA. Recoveries of the biosensor towards simultaneous detection of MC-LR, 2, 4-D, atrazine and BPA in spiked real water samples varied from 84% to 120%, indicating the satisfactory accuracy of the established technology.


Asunto(s)
Atrazina/aislamiento & purificación , Técnicas Biosensibles , Contaminantes Ambientales/aislamiento & purificación , Atrazina/toxicidad , Contaminantes Ambientales/toxicidad , Fluorescencia , Rayos Láser , Dióxido de Silicio/química
6.
Opt Lett ; 42(19): 3812-3815, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957135

RESUMEN

A low-loss, broadband and high fabrication tolerant optical coupler for the monolithic integration of Si3N4 and polymer waveguides is designed and experimentally demonstrated. The coupler is based on the adiabatic vertical tapering of the Si3N4 waveguides. Low-loss operation is experimentally verified at both 976 and 1460-1635 nm wavelengths. Measured losses per coupler are as low as 0.12 and 0.14 dB at 976 and 1550 nm, respectively, and below 0.2 dB at both wavelengths for lateral misalignments between the Si3N4 and polymer waveguides up to 1.0 µm.

7.
Opt Express ; 24(6): 5715-27, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136769

RESUMEN

Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

8.
Opt Lett ; 40(23): 5618-21, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625065

RESUMEN

This work presents an integrated microwave photonics splitter with reconfigurable amplitude, phase, and delay offsets. The core components for this function are a dual-parallel Mach-Zehnder modulator, a deinterleaver, and tunable delay lines, all implemented using photonic integrated circuits. Using a demonstrator with an optical free spectral range of 25 GHz, we show experimentally the RF splitting function over two continuous bands, i.e., 0.9-11.6 GHz and 13.4-20 GHz. This result promises a deployable solution for creating wideband, reconfigurable RF splitters in integrated forms.

9.
Opt Express ; 23(15): 19596-604, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367617

RESUMEN

We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chip.

10.
Opt Express ; 23(11): 14018-26, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072771

RESUMEN

We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform.

11.
Opt Express ; 23(2): 642-8, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835823

RESUMEN

In this paper we present a novel fabrication technique for silicon nitride (Si(3)N(4)) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si(3)N(4). Using this technique no stress-induced cracks in the Si(3)N(4) layer were observed resulting in a high yield of devices on the wafer. The propagation losses of the obtained waveguides were measured to be as low as 0.4 dB/cm at a wavelength of around 1550 nm.

12.
Opt Express ; 22(14): 17079-91, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25090522

RESUMEN

We propose and experimentally demonstrate the working principles of two novel microwave photonic (MWP) beamformer circuits operating with phase modulation (PM) and direct detection (DD). The proposed circuits incorporate two major signal processing functionalities, namely a broadband beamforming network employing ring resonator-based delay lines and an optical sideband manipulator that renders the circuit outputs equivalent to those of intensity-modulated MWP beamformers. These functionalities allow the system to employ low-circuit-complexity modulators and detectors, which brings significant benefits on the system construction cost and operation stability. The functionalities of the proposed MWP beamformer circuits were verified in experimental demonstrations performed on two sample circuits realized in Si(3)N(4)/SiO(2) waveguide technology. The measurements exhibit a 2 × 1 beamforming effect for an instantaneous RF transmission band of 3‒7 GHz, which is, to our best knowledge, the first verification of on-chip MWP beamformer circuits operating with PM and DD.

13.
Opt Express ; 22(25): 30528-37, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25606999

RESUMEN

We present a new approach to the dual-beam geometry for on-chip optical trapping and Raman spectroscopy, using waveguides microfabricated in TripleX technology. Such waveguides are box shaped and consist of SiO2 and Si3N4, so as to provide a low index contrast with respect to the SiO2 claddings and low loss, while retaining the advantages of Si3N4. The waveguides enable both the trapping and Raman functionality with the same dual beams. Polystyrene beads of 1 µm diameter can be easily trapped with the device. In the axial direction discrete trapping positions occur, owing to the intensity pattern of the interfering beams. Trapping events are interpreted on the basis of simulated optical fields and calculated optical forces. The average transverse trap stiffness is 0.8 pN/nm/W, indicating that a strong trap is formed by the beams emitted by the waveguides. Finally, we measure Raman spectra of trapped beads for short integration times (down to 0.25 s), which is very promising for Raman spectroscopy of microbiological cells.

14.
Opt Express ; 21(22): 25999-6013, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216825

RESUMEN

In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

15.
Opt Express ; 21(19): 22937-61, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24104179

RESUMEN

We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

16.
Opt Express ; 21(20): 23286-94, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24104242

RESUMEN

We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a low-loss, tunable Si3N4 optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.

17.
Opt Express ; 21(3): 3114-24, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23481769

RESUMEN

We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.


Asunto(s)
Interferometría/instrumentación , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Microondas , Fotones , Transductores
18.
Opt Express ; 20(24): 26499-510, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23187505

RESUMEN

We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.


Asunto(s)
Filtración/instrumentación , Luz , Microondas , Dispositivos Ópticos , Fotones , Procesamiento de Señales Asistido por Computador/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Humanos
19.
Appl Opt ; 51(7): 789-802, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22410879

RESUMEN

In this paper we describe the system integration and the experimental demonstration of a photonically beamformed four-element receiving array antenna for radio astronomy applications. To our knowledge, the work described here is the first demonstration of the squint-free, continuously tunable beamsteering capability offered by an integrated photonic beamformer based on optical ring resonator true-time-delay units, with measured radiation patterns. The integrated beamformer is realized in a low loss, complementary metal-oxide-semiconductor (CMOS) compatible optical waveguide technology. The measurements show a wideband, continuous beamsteering operation over a steering angle of 23.5 degrees and an instantaneous bandwidth of 500 MHz limited only by the measurement setup.

20.
Opt Express ; 19(22): 21475-84, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22108997

RESUMEN

We report, for the first time, an integrated photonic signal processor consisting of a reconfigurable optical delay line (ODL) with a separate carrier tuning (SCT) unit and an optical sideband filter on a single CMOS compatible photonic chip. The processing functionalities are carried out with optical ring resonators as building blocks. We show that the integrated approach together with the use of SCT technique allows the implementation of a wideband, fully-tunable ODL with reduced complexity. To highlight the functionalities of the processor, we demonstrate a reconfigurable microwave photonic filter where the ODL has been configured in a bandwidth over 1 GHz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...