Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 109(11): 1836-1847.e5, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33915110

RESUMEN

Mature behaviors emerge from neural circuits sculpted by genetic programs and spontaneous and evoked neural activity. However, how neural activity is refined to drive maturation of learned behavior remains poorly understood. Here, we explore how transient hormonal signaling coordinates a neural activity state transition and maturation of associative learning. We identify spontaneous, asynchronous activity in a Drosophila learning and memory brain region, the mushroom body. This activity declines significantly over the first week of adulthood. Moreover, this activity is generated cell-autonomously via Cacophony voltage-gated calcium channels in a single cell type, α'/ß' Kenyon cells. Juvenile hormone, a crucial developmental regulator, acts transiently in α'/ß' Kenyon cells during a young adult sensitive period to downregulate spontaneous activity and enable subsequent enhanced learning. Hormone signaling in young animals therefore controls a neural activity state transition and is required for improved associative learning, providing insight into the maturation of circuits and behavior.


Asunto(s)
Hormonas Juveniles/metabolismo , Aprendizaje , Cuerpos Pedunculados/metabolismo , Neurogénesis , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transmisión Sináptica
2.
Nat Commun ; 9(1): 1128, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555902

RESUMEN

Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.


Asunto(s)
Caenorhabditis elegans/fisiología , Caenorhabditis elegans/parasitología , Lípidos/fisiología , Conducta Predatoria/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Femenino , Lípidos/química , Oviposición/fisiología , Conducta Predatoria/efectos de los fármacos , Rabdítidos/patogenicidad , Rabdítidos/fisiología , Células Receptoras Sensoriales/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sertralina/farmacología , Transducción de Señal/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/fisiología , Ácido gamma-Aminobutírico/fisiología
3.
Elife ; 4: e10181, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26394000

RESUMEN

Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWC(ON) and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines.


Asunto(s)
Envejecimiento , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/fisiología , Odorantes , Animales , Benzaldehídos/metabolismo , Neurotransmisores/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología
4.
Worm ; 3: e27730, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254145

RESUMEN

Neuropeptide signaling remodels the composition of a chemosensory circuit and shapes behavior in Caenorhabditis elegans. We reported that the ASE left (ASEL) salt sensory neuron uses a proprotein convertase, BLI-4, to cleave the insulin-like peptide INS-6. INS-6 peptides are released from the ASEL neuron in response to large, but not small changes in salt stimuli. Fast INS-6 signaling functionally transforms the AWC olfactory sensory neuron into an interneuron in the neural circuit for high salt. This new circuit configuration potentiates behavioral attraction to high salt. Here, in the context of genes, circuits, and behaviors, we discuss the diverse modes of neuropeptide processing and signaling, which expand the coding potential of the nervous system. First, neuropeptide processing and release genes prepare insulin peptides to signal in the nervous system. Second, this neuropeptide signaling diversifies the communication of neural circuits and introduces circuit-level flexibility. Finally, the resulting multisensory neurons and circuits drive finely tuned behavioral choices.

5.
Nat Neurosci ; 16(10): 1461-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24013594

RESUMEN

Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic, but the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, used BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large, but not small, changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switched the AWC olfactory sensory neuron into an interneuron in the salt circuit. Worms with disrupted insulin signaling had deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results indicate that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/fisiología , Quimiotaxis/fisiología , Red Nerviosa/fisiología , Neuropéptidos/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans
6.
Curr Opin Genet Dev ; 21(6): 806-11, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21889328

RESUMEN

Olfactory networks, comprised of sensory neurons and interneurons, detect and process changes in the chemical environment to drive animal behavior. Recent studies combining genetics with behavioral analyses and imaging in worms, flies and mice have revealed new insights into the mechanisms of olfaction. In this discussion, we focus on three interesting findings. First, sensory neuron responses to odor are modulated by neuropeptides. This modulation might serve to extend the range of responses of the sensory neurons and also to integrate internal state information into the chemosensory circuit. Second, genetic tracing studies in mice and flies have shown that the first layer of connections in chemosensory circuits from olfactory epithelium to the glomeruli are stereotyped, while the subsequent connections to higher order sensory processing regions are not. Distributed connectivity to the higher order sensory processing regions has profound implications for how odors are represented in those regions. Third, recent work has revealed that odors are surprisingly sparsely represented in the piriform cortex. The sparse coding in the higher brain centers implies a much greater role for experience and learning in mediating responses to olfactory cues. Analyzing olfactory network function in various species provides us with fascinating clues about how sensory information is acquired, processed and represented at multiple levels within the nervous system.


Asunto(s)
Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Percepción Olfatoria , Olfato , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Odorantes , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
7.
J Neurosci ; 30(21): 7423-33, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20505109

RESUMEN

The chemokine SDF1 activates a cAMP-mediated signaling pathway that antagonizes retinal responses to the midline repellent slit. We show that knocking down the calmodulin-activated adenylate cyclase ADCY8 makes retinal axons insensitive to SDF1. Experiments in vivo using male and female zebrafish (Danio rerio) confirm a mutual antagonism between slit signaling and ADCY8-mediated signaling. Unexpectedly, knockdown of ADCY8 or another calmodulin-activated cyclase, ADCY1, induces ipsilateral misprojections of retinal axons that would normally cross the ventral midline. We demonstrate a cell-autonomous requirement for ADCY8 in retinal neurons for normal midline crossing. These findings are the first to show that ADCY8 is required for axonal pathfinding before axons reach their targets. They support a model in which ADCY8 is an essential component of a signaling pathway that opposes repellent signaling. Finally, they demonstrate that ADCY8 helps regulate retinal sensitivity to midline guidance cues.


Asunto(s)
Adenilil Ciclasas/fisiología , Axones/fisiología , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Retina/citología , Células Ganglionares de la Retina/citología , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Axones/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Trasplante de Células , Células Cultivadas , Quimiocina CXCL12/farmacología , Embrión de Pollo , Colforsina/farmacología , AMP Cíclico/metabolismo , Electroporación/métodos , Embrión no Mamífero , Femenino , Lateralidad Funcional , Proteína GAP-43/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Oligorribonucleótidos Antisentido/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transfección , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...