Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Neurobiol Aging ; 97: 129-143, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232936

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive decline of memory and cognitive function. The disease is characterized by the presence of amyloid plaques, tau tangles, altered inflammatory signaling, and alterations in numerous neurotransmitter signaling systems, including γ-aminobutyric acid (GABA). Given the extensive role of GABA in regulating neuronal activity, a careful investigation of GABA-related changes is needed. Further, given persistent inflammation has been demonstrated to drive AD pathology, the presence of GABA B receptor expressed on glia that serve a role regulation of the immune response adds to potential implications of altered GABA in AD. There has not previously been a systematic evaluation of GABA-related changes in an amyloid model of AD that specifically focuses on examining changes in GABA B receptors. In the present study, we examined alterations in several GABA-specific targets in the APP/PS1 mouse model at different ages. In the 4-month-old cohort, no significant deficits in spatial learning and memory or alterations in any of the GABAergic targets were observed compared with wild-type controls. However, we identified significant alterations in several GABA-related targets in the 6-month-old cohort that exhibited spatial learning deficits that include changes in glutamic acid decarboxylase 65, GABA transporter type 3, and GABA B receptors protein and mRNA levels. This was the same cohort at which learning and memory deficits and significant amyloid pathology was observed. Overall, our study provides evidence of altered GABAergic signaling in an amyloid model of AD at a time point consistent with AD-related deficits.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Receptores de GABA-B/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Memoria , Ratones Transgénicos , Neuroglía/metabolismo , Receptores de GABA-B/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Aprendizaje Espacial , Ácido gamma-Aminobutírico/metabolismo
2.
Alzheimers Dement (N Y) ; 4: 575-590, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30406177

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid ß plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...