Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(2): 202-227, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38018443

RESUMEN

Imines are a versatile class of chemicals with applications in pharmaceuticals and as synthetic intermediates. While imines are conventionally synthesized via aldehyde-amine condensation, their direct preparation from amines can avoid the need for the independent preparation of the aldehyde coupling partner and associated constraints with regard to aldehyde storage and purification. The direct preparation of imines from amines typically utilizes transition metal catalysis and is often well-aligned with green chemistry principles. This review provides a comprehensive overview of transition metal catalysed imine synthesis, with a particular focus on the copper-catalyzed oxidative coupling of amines. The emerging application of micellar catalysis for imine synthesis is also surveyed due to its potential to avoid the use of hazardous solvents and intensify these reactions through reduced catalyst loadings and locally increased reactant concentrations. Future directions relating to the confluence of these two areas are proposed towards the more sustainable preparation of imines.

2.
Chem Commun (Camb) ; 58(54): 7451-7465, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35726789

RESUMEN

The breadth of utility of a commercially available and stable strong Lewis acid catalyst, tris(pentafluorophenyl)borane, has been explored, highlighting its use towards a wide range of unique siloxane products and their corresponding applications. This article focuses on the variety of different outcomes that this impressive borane offers in controlled and selective manners by the variation of reaction conditions, precursor functionalities, reagent or catalyst loading, and the mechanistic considerations that contribute. With a predominant focus on the Piers-Rubinsztajn reaction and its modifications, tris(pentaflurophenyl)borane's utility is highlighted in the synthesis of linear, cyclic and macrocyclic siloxanes, aryl-/alkoxysiloxanes, and other bespoke products. The significance of the catalytic transformation within the field of siloxane chemistry is discussed alongside some of the challenges that arise from using the borane catalyst.

3.
Chem Commun (Camb) ; 57(26): 3190-3202, 2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33720262

RESUMEN

This article highlights recent discoveries within the field of polysulfides which are created from waste sulfur through inverse vulcanisation. Due to the current environmental climate, making materials from renewable resources or industrial waste is highly desirable. Sulfur is an impurity refined out of petroleum and gas reserves at a rate of more than 70 million tonnes a year and is currently used in the rubber, fertiliser and chemical industries. However, even with these applications, the usage is significantly below the amount refined each year, leading to large stockpiles of sulfur. Inverse vulcanisation is an attractive method to synthesize new sulfur based materials by trapping the polysulfide using crosslinkers containing diene functionalities. A wide variety of unsaturated crosslinkers can be incorporated into polysulfide materials resulting in inorganic rubbers, combining the benefits of both components. The materials produced have been shown to selectively absorb mercury, are prominsing replacements for existing mid IR lenses, and can be used as capsules for controlled release fertilisers. An overview of the field, including the breadth of crosslinkers employed, synthetic strategies, and the properties and potential applications of polysulfides created through inverse vulcanisation, is captured.

4.
RSC Adv ; 11(35): 21343-21350, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35478807

RESUMEN

Structural isomers of naphthalene-bridged disilanes were prepared via catalytic intramolecular dehydrocoupling of disilyl precursors using Wilkinson's catalyst. Interestingly, it was observed that interchanging the side groups on the silicon atoms altered the photophysical properties of the bridged disilanes. Herein, we report the first example of naphthalene bridged disilanes forming excimers in non-polar solvents. Cyclic voltammetry experiments and DFT calculations were performed to analyse the band gaps of the compounds and σ-π mixing in the bridged disilanes.

5.
Molecules ; 25(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823507

RESUMEN

This review covers the main synthetic routes to and the corresponding mechanisms of phosphoramidate formation. The synthetic routes can be separated into six categories: salt elimination, oxidative cross-coupling, azide, reduction, hydrophosphinylation, and phosphoramidate-aldehyde-dienophile (PAD). Examples of some important compounds synthesized through these routes are provided. As an important class of organophosphorus compounds, the applications of phosphoramidate compounds, are also briefly introduced.


Asunto(s)
Amidas/síntesis química , Técnicas de Química Sintética/métodos , Ácidos Fosfóricos/síntesis química , Amidas/química , Ácidos Fosfóricos/química
6.
Front Chem ; 8: 477, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32656180

RESUMEN

The utility of (C6F5)3B(OH2) as catalyst for the simple and environmentally benign synthesis of oligosiloxanes directly from hydrosilanes, is reported. This protocol offers several advantages compared to other methods of synthesizing siloxanes, such as mild reaction conditions, low catalyst loading, and a short reaction time with high yields and purity. The considerable H2O-tolerance of (C6F5)3B(OH2) promoted a catalytic route to disiloxanes which showed >99% conversion of three tertiary silanes, Et3SiH, PhMe2SiH, and Ph3SiH. Preliminary data on the synthesis of unsymmetrical disiloxanes (Si-O-Si') suggests that by modifying the reaction conditions and/or using a 1:1 combination of silane to silanol the cross-product can be favored. Intramolecular reactions of disilyl compounds with catalytic (C6F5)3B(OH2) led to the formation of novel bridged siloxanes, containing a Si-O-Si linkage within a cyclic structure, as the major product. Moreover, the reaction conditions enabled recovery and recycling of the catalyst. The catalyst was re-used 5 times and demonstrated excellent conversion for each substrate at 1.0 mol% catalyst loading. This seemingly simple reaction has a rather complicated mechanism. With the hydrosilane (R3SiH) as the sole starting material, the fate of the reaction largely depends on the creation of silanol (R3SiOH) from R3SiH as these two undergo dehydrocoupling to yield a disiloxane product. Generation of the silanol is based on a modified Piers-Rubinsztajn reaction. Once the silanol has been produced, the mechanism involves a series of competitive reactions with multiple catalytically relevant species involving water, silane, and silanol interacting with the Lewis acid and the favored reaction cycle depends on the concentration of various species in solution.

7.
Dalton Trans ; 48(37): 13971-13980, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31483424

RESUMEN

Synthesis of naphthalene bridged disilanes 2R (R = Me, Ph) was performed via catalytic dehydrocoupling. Using RhCl(PPh3)3 as a catalyst, an intramolecular Si-Si bond was readily formed from the corresponding disilyl precursors 1R (R = Me, Ph). For catalytic reactions using (C6F5)3B(OH2), bridged siloxanes (3Ph and 3Me) were observed. Attempts to install the 1,8-naphthalene bridge directly onto a disilane resulted in an unusual product (4), containing two silicon centres bridged through one naphthyl group, and another naphthyl group attached to a single Si centre. In order for this product to form, both a Si to Si hydrogen shift rearrangement as well as Si-Si bond cleavage occurred. The effects of phenyl and methyl substitutions on the structure and electronic properties of the synthesised compounds was investigated by single crystal X-ray diffraction, as well as IR and multinuclear NMR spectroscopic analysis. In addition, theoretical UV-Vis absorption maxima were evaluated using density functional theory (TD-SCF) on a B3LYP/6-31(++)G** level of theory and compared with experimental UV-Vis spectroscopic data.

8.
ACS Nano ; 12(9): 8920-8933, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30207454

RESUMEN

Living crystallization-driven self-assembly (CDSA) is a seeded growth method for crystallizable block copolymers (BCPs) and related amphiphiles in solution and has recently emerged as a highly promising and versatile route to uniform core-shell nanoparticles (micelles) with control of dimensions and architecture. However, the factors that influence the rate of nanoparticle growth have not been systematically studied. Using transmission electron microscopy, small- and wide-angle X-ray scattering, and super-resolution fluorescence microscopy techniques, we have investigated the kinetics of the seeded growth of poly(ferrocenyldimethylsilane)- b-(polydimethylsiloxane) (PFS- b-PDMS), as a model living CDSA system for those employing, for example, crystallizable emissive and biocompatible polymers. By altering various self-assembly parameters including concentration, temperature, solvent, and BCP composition our results have established that the time taken to prepare fiber-like micelles via the living CDSA method can be reduced by decreasing temperature, by employing solvents that are poorer for the crystallizable PFS core-forming block, and by increasing the length of the PFS core-forming block. These results are of general importance for the future optimization of a wide variety of living CDSA systems. Our studies also demonstrate that the growth kinetics for living CDSA do not exhibit the first-order dependence of growth rate on unimer concentration anticipated by analogy with living covalent polymerizations of molecular monomers. This difference may be caused by the combined influence of chain conformational effects of the BCP on addition to the seed termini and chain length dispersity.


Asunto(s)
Nanopartículas/química , Polímeros/síntesis química , Cristalización , Cinética , Micelas , Microscopía Fluorescente , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
9.
Inorg Chem ; 54(22): 10878-89, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26535961

RESUMEN

Although the dehydrogenation chemistry of amine-boranes substituted at nitrogen has attracted considerable attention, much less is known about the reactivity of their B-substituted analogues. When the B-methylated amine-borane adducts, RR'NH·BH2Me (1a: R = R' = H; 1b: R = Me, R' = H; 1c: R = R' = Me; 1d: R = R' = iPr), were heated to 70 °C in solution (THF or toluene), redistribution reactions were observed involving the apparent scrambling of the methyl and hydrogen substituents on boron to afford a mixture of the species RR'NH·BH3-xMex (x = 0-3). These reactions were postulated to arise via amine-borane dissociation followed by the reversible formation of diborane intermediates and adduct reformation. Dehydrocoupling of 1a-1d with Rh(I), Ir(III), and Ni(0) precatalysts in THF at 20 °C resulted in an array of products, including aminoborane RR'N═BHMe, cyclic diborazane [RR'N-BHMe]2, and borazine [RN-BMe]3 based on analysis by in situ (11)B NMR spectroscopy, with peak assignments further supported by density functional theory (DFT) calculations. Significantly, very rapid, metal-free hydrogen transfer between 1a and the monomeric aminoborane, iPr2N═BH2, to yield iPr2NH·BH3 (together with dehydrogenation products derived from 1a) was complete within only 10 min at 20 °C in THF, substantially faster than for the N-substituted analogue MeNH2·BH3. DFT calculations revealed that the hydrogen transfer proceeded via a concerted mechanism through a cyclic six-membered transition state analogous to that previously reported for the reaction of the N-dimethyl species Me2NH·BH3 and iPr2N═BH2. However, as a result of the presence of an electron donating methyl substituent on boron rather than on nitrogen, the process was more thermodynamically favorable and the activation energy barrier was reduced.

10.
Chemistry ; 21(51): 18539-42, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26477697

RESUMEN

Analytical methods that enable visualization of nanomaterials derived from solution self-assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization-driven block copolymer (BCP) self-assembly in organic media at the sub-diffraction scale. Four different dyes were successfully used for single-colour super-resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ. Dual-colour SMLM imaging was used to measure and compare the rate of addition of red fluorescent BCP to the termini of green fluorescent seed micelles to generate block comicelles. Although well-established for aqueous systems, the results highlight the potential of super-resolution microscopy techniques for the interrogation of self-assembly processes in organic media.


Asunto(s)
Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Nanoestructuras/química , Polímeros/química , Cristalización , Micelas , Solventes
11.
J Am Chem Soc ; 136(25): 9078-93, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24844130

RESUMEN

A detailed catalytic, stoichiometric, and mechanistic study on the dehydrocoupling of H3B·NMe2H and dehydropolymerization of H3B·NMeH2 using the [Rh(Xantphos)](+) fragment is reported. At 0.2 mol % catalyst loadings, dehydrocoupling produces dimeric [H2B-NMe2]2 and poly(methylaminoborane) (M(n) = 22,700 g mol(-1), PDI = 2.1), respectively. The stoichiometric and catalytic kinetic data obtained suggest that similar mechanisms operate for both substrates, in which a key feature is an induction period that generates the active catalyst, proposed to be a Rh-amido-borane, that reversibly binds additional amine-borane so that saturation kinetics (Michaelis-Menten type steady-state approximation) operate during catalysis. B-N bond formation (with H3B·NMeH2) or elimination of amino-borane (with H3B·NMe2H) follows, in which N-H activation is proposed to be turnover limiting (KIE = 2.1 ± 0.2), with suggested mechanisms that only differ in that B-N bond formation (and the resulting propagation of a polymer chain) is favored for H3B·NMeH2 but not H3B·NMe2H. Importantly, for the dehydropolymerization of H3B·NMeH2, polymer formation follows a chain growth process from the metal (relatively high degrees of polymerization at low conversions, increased catalyst loadings lead to lower-molecular-weight polymer), which is not living, and control of polymer molecular weight can be also achieved by using H2 (M(n) = 2,800 g mol(-1), PDI = 1.8) or THF solvent (M(n) = 52,200 g mol(-1), PDI = 1.4). Hydrogen is suggested to act as a chain transfer agent in a similar way to the polymerization of ethene, leading to low-molecular-weight polymer, while THF acts to attenuate chain transfer and accordingly longer polymer chains are formed. In situ studies on the likely active species present data that support a Rh-amido-borane intermediate as the active catalyst. An alternative Rh(III) hydrido-boryl complex, which has been independently synthesized and structurally characterized, is discounted as an intermediate by kinetic studies. A mechanism for dehydropolymerization is suggested in which the putative amido-borane species dehydrogenates an additional H3B·NMeH2 to form the "real monomer" amino-borane H2B═NMeH that undergoes insertion into the Rh-amido bond to propagate the growing polymer chain from the metal. Such a process is directly analogous to the chain growth mechanism for single-site olefin polymerization.

12.
Nat Chem ; 5(10): 817-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24056337

RESUMEN

Catalytic reactions that enable the formation of new bonds to carbon centres play a pervasive role in the state-of-the-art synthesis of organic molecules and macromolecules. In contrast, the development of analogous processes as routes to main group compounds and materials has been much slower. Nevertheless, recent advances have led to a broad expansion of this field and now allow access to a wide range of catenated structures based on elements across the p block. These breakthroughs have already impacted areas such as hydrogen storage and transfer, functional inorganic polymers and ceramic thin films. Dehydrogenation and dehydrocoupling processes are particularly well developed and may be mediated by either transition metal or main group catalysts. Such pathways represent an increasingly attractive and convenient alternative to traditional routes, such as salt metathesis and reductive coupling reactions. An overview of this emerging area is presented in this Review with a focus on recent developments and future challenges.


Asunto(s)
Boranos/química , Química Orgánica , Siloxanos/química , Catálisis , Ensayo de Materiales , Elementos de Transición/química
13.
J Am Chem Soc ; 135(34): 12670-83, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23941398

RESUMEN

Linear diborazanes R3N-BH2-NR2-BH3 (R = alkyl or H) are often implicated as key intermediates in the dehydrocoupling/dehydrogenation of amine-boranes to form oligo- and polyaminoboranes. Here we report detailed studies of the reactivity of three related examples: Me3N-BH2-NMe2-BH3 (1), Me3N-BH2-NHMe-BH3 (2), and MeNH2-BH2-NHMe-BH3 (3). The mechanisms of the thermal and catalytic redistributions of 1 were investigated in depth using temporal-concentration studies, deuterium labeling, and DFT calculations. The results indicated that, although the products formed under both thermal and catalytic regimes are identical (Me3N·BH3 (8) and [Me2N-BH2]2 (9a)), the mechanisms of their formation differ significantly. The thermal pathway was found to involve the dissociation of the terminal amine to form [H2B(µ-H)(µ-NMe2)BH2] (5) and NMe3 as intermediates, with the former operating as a catalyst and accelerating the redistribution of 1. Intermediate 5 was then transformed to amine-borane 8 and the cyclic diborazane 9a by two different mechanisms. In contrast, under catalytic conditions (0.3-2 mol % IrH2POCOP (POCOP = κ(3)-1,3-(OPtBu2)2C6H3)), 8 was found to inhibit the redistribution of 1 by coordination to the Ir-center. Furthermore, the catalytic pathway involved direct formation of 8 and Me2N═BH2 (9b), which spontaneously dimerizes to give 9a, with the absence of 5 and BH3 as intermediates. The mechanisms elucidated for 1 are also likely to be applicable to other diborazanes, for example, 2 and 3, for which detailed mechanistic studies are impaired by complex post-redistribution chemistry. This includes both metal-free and metal-mediated oligomerization of MeNH═BH2 (10) to form oligoaminoborane [MeNH-BH2]x (11) or polyaminoborane [MeNH-BH2]n (16) following the initial redistribution reaction.

14.
Chem Commun (Camb) ; 49(80): 9098-100, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23982163

RESUMEN

The reaction of N-heterocyclic carbenes with polyaminoboranes [MeNH-BH2]n or [NH2-BH2]n at 20 °C led to depolymerisation and the formation of labile, monomeric aminoborane-NHC adducts, RNH-BH2-NHC (R = Me or H); a similar NHC adduct of Ph2N=BCl2 was characterized by single crystal X-ray diffraction.

15.
J Am Chem Soc ; 134(40): 16805-16, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23016922

RESUMEN

The kinetics of the metal-free hydrogen transfer from amine-borane Me(2)NH·BH(3) to aminoborane iPr(2)N═BH(2), yielding iPr(2)NH·BH(3) and cyclodiborazane [Me(2)N-BH(2)](2) via transient Me(2)N═BH(2), have been investigated in detail, with further information derived from isotopic labeling and DFT computations. The approach of the system toward equilibrium was monitored in both directions by (11)B{(1)H} NMR spectroscopy in a range of solvents and at variable temperatures in THF. Simulation of the resulting temporal-concentration data according to a simple two-stage hydrogen transfer/dimerization process yielded the rate constants and thermodynamic parameters attending both equilibria. At ambient temperature, the bimolecular hydrogen transfer is slightly endergonic in the forward direction (ΔG(1)°((295)) = 10 ± 7 kJ·mol(-1); ΔG(1)(‡)((295)) = 91 ± 5 kJ·mol(-1)), with the overall equilibrium being driven forward by the subsequent exergonic dimerization of the aminoborane Me(2)N═BH(2) (ΔG(2)°((295)) = -28 ± 14 kJ·mol(-1)). Systematic deuterium labeling of the NH and BH moieties in Me(2)NH·BH(3) and iPr(2)N═BH(2) allowed the kinetic isotope effects (KIEs) attending the hydrogen transfer to be determined. A small inverse KIE at boron (k(H)/k(D) = 0.9 ± 0.2) and a large normal KIE at nitrogen (k(H)/k(D) = 6.7 ± 0.9) are consistent with either a pre-equilibrium involving a B-to-B hydrogen transfer or a concerted but asynchronous hydrogen transfer via a cyclic six-membered transition state in which the B-to-B hydrogen transfer is highly advanced. DFT calculations are fully consistent with a concerted but asynchronous process.

16.
J Am Chem Soc ; 133(48): 19322-5, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22035112

RESUMEN

Ir-catalyzed (20 °C) or thermal (70 °C) dehydrocoupling of the linear diborazane MeNH(2)-BH(2)-NHMe-BH(3) led to the formation of poly- or oligoaminoboranes [MeNH-BH(2)](x) (x = 3 to >1000) via an initial redistribution process that forms MeNH(2)·BH(3) and also transient MeNH═BH(2), which exists in the predominantly metal-bound and free forms, respectively. Studies of analogous chemistry led to the discovery of metal-free hydrogenation of the B═N bond in the "model" aminoborane iPr(2)N═BH(2) to give iPr(2)NH·BH(3) upon treatment with the diborazane Me(3)N-BH(2)-NHMe-BH(3) or amine-boranes RR'NH·BH(3) (R, R' = H or Me).

17.
J Am Chem Soc ; 132(8): 2784-94, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20136131

RESUMEN

Initiation processes in a family of ruthenium phosphonium alkylidene catalysts, some of which are commercially available, are presented. Seven 16-electron zwitterionic catalyst precursors of general formula (H(2)IMes)(Cl)(3)Ru=C(H)P(R(1))(2)R(2) (R(1) = R(2) = C(6)H(11), C(5)H(9), i-C(3)H(7), 1-Cy(3)-Cl, 1-Cyp(3)-Cl, 1-(i)Pr(3)-Cl; R(1) = C(6)H(11), R(2) = CH(2)CH(3), 1-EtCy(2)-Cl; R(1) = C(6)H(11), R(2) = CH(3), 1-MeCy(2)-Cl; R(1) = i-C(3)H(7), R(2) = CH(2)CH(3), 1-Et(i)Pr(2)-Cl; R(1) = i-C(3)H(7), R(2) = CH(3), 1-Me(i)Pr(2)-Cl) were prepared. These compounds can be converted to the metathesis active 14-electron phosphonium alkylidenes by chloride abstraction with B(C(6)F(5))(3). The examples with symmetrically substituted phosphonium groups exist as monomers in solution and are rapid initiators of olefin metathesis reactions. The unsymmetrically substituted phosphonium alkylidenes are observed to undergo reversible dimerization, the extent of which is dependent on the steric bulk of the phosphonium group. Kinetic and thermodynamic parameters of these equilibria are presented, as well as experiments that show that metathesis is only initiated through the monomers; thus dedimerization is required for initiation. In another detailed study, the series of catalysts 1-R(3) were reacted with o-isopropoxystyrene under pseudo-first-order conditions to quantify second-order olefin binding rates. A more complex initiation process was observed in that the rates were accelerated by catalytic amounts of ethylene produced in the reaction with o-isopropoxystyrene. The ability of the catalyst to generate ethylene is related to the nature of the phosphonium group, and initiation rates can be dramatically increased by the intentional addition of a catalytic amount of ethylene.

18.
Dalton Trans ; (42): 9110-2, 2009 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-20449182

RESUMEN

Dimeric tetraalkyldistannoxanes are have been reported to catalyze esterification reactions, but are difficult to investigate in detail due to the lack of suitable spectroscopic handles. Electrospray ionization mass spectrometry (ESI-MS), in conjunction with a tethered charge on a tin atom, reveals that immediate decomposition to mono-tin carboxylate compounds occurs in the presence of carboxylic acid.

19.
Chemistry ; 14(36): 11565-72, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19035588

RESUMEN

The four-coordinate ruthenium phosphonium alkylidenes 1-Cy and 1-iPr, differing in the substituent on the phosphorus center, were observed to decompose thermally in the presence of 1,1-dichloroethylene to produce [H(3)CPR(3)][Cl]. The major ruthenium-containing product was a trichloro-bridged ruthenium dimer that incorporates the elements of the 1,1-dichloroethylene as a dichlorocarbene ligand and a styrenic vinyl group on the supporting NHC ligand. Spectroscopic, kinetic, and deuterium-labeling experiments probed the mechanism of this process, which involves a rate-limiting C-H activation of an NHC mesityl ortho methyl group. These studies provide insight into intrinsic decomposition processes of active Grubbs type olefin metathesis catalysts, pointing the way to new catalyst design directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA