Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 77: 101901, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38777222

RESUMEN

Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.

2.
Mol Neurobiol ; 58(3): 1217-1236, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33123979

RESUMEN

Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 µL) or glucose (GLU; 1, 2 or 3 mM, 1 µL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.


Asunto(s)
Glucosa/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Muerte Celular , Hipocampo/enzimología , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Consolidación de la Memoria , Neuronas/patología , Estrés Oxidativo , Pilocarpina , Ratas Wistar , Índice de Severidad de la Enfermedad , Transportador 1 de Sodio-Glucosa/metabolismo , Estado Epiléptico/fisiopatología
3.
Int J Biol Macromol ; 154: 661-671, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198046

RESUMEN

Thimerosal (TH), an organomercurial compound, is used as a preservative in vaccines and cosmetics. Its interaction with human hemoglobin (Hb) was investigated under physiological conditions using biophysical and biological assays, aiming to evaluate hazardous effects. TH interacts spontaneously with Hb (stoichiometry 2:1, ligand-protein), preferably by electrostatic forces, with a binding constant of 1.41 × 106 M-1. Spectroscopic data allows to proposing that TH induces structural changes in Hg, through ethylmercury transfer to human Hb-Cys93 residues, forming thiosalicylic acid, which, in turn, interacts with the positive side of the amino acid in the Hb-HgEt adduct chain. As a consequence, inhibition of Hb-O2 binding capacity up to 72% (human Hb), and 50% (human erythrocytes), was verified. Dose-dependent induction of TH forming advanced glycation end products (AGE) and protein aggregates (amyloids) was additionally observed. Finally, these results highlight the toxic potential of the use of TH in biological systems, with a consequent risk to human health.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hemoglobinas/metabolismo , Oxígeno/metabolismo , Conservadores Farmacéuticos/toxicidad , Timerosal/toxicidad , Humanos
4.
J Physiol Biochem ; 67(3): 371-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21437730

RESUMEN

Currently, there are no reports in the literature demonstrating any animal model that ingests one of the fattiest animal food source, the bovine brain. We hypothesized that a high-fat diet (HFD), based on dried bovine brain, could be used to develop an animal model possessing a spectrum of insulin resistance-related features. The HFD was formulated with 40% dried bovine brain plus 16.4% butter fat, prepared in-house. Furthermore, the diet contained 52% calories as fat and 73% of total fatty acids were saturated. Swiss mice weighing about 40 g were assigned to two dietary groups (n=6/group), one group received a standard chow diet and the other was given HFD for 3 months. The body weight and biochemical parameters of the animals were measured initially and at monthly intervals until the end of the experiment. Animals fed on a HFD showed a significant increase in the body and adipose tissue weight, serum total cholesterol and triglyceride levels, when compared with mice fed on the control diet. Additionally, the HFD group showed higher circulating levels of liver transaminases, such as alanine aminotransferase and aspartate aminotransferase, compared with the control group. Finally, to illustrate the usefulness of this model, we report that the HFD induced mild hyperglycemia, fasting hyperinsulinemia, and increased the homeostasis model of assessment (HOMA-IR), in comparison with the control group. In conclusion, our results show that HFD, based on dried bovine brain, causes insulin resistance-related metabolic disturbances. Thus, this may be a suitable model to study disturbances in energy metabolism and their consequences.


Asunto(s)
Encéfalo , Grasas de la Dieta/administración & dosificación , Dislipidemias/etiología , Resistencia a la Insulina , Tejido Adiposo/patología , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Glucemia/metabolismo , Peso Corporal , Bovinos , Desecación , Modelos Animales de Enfermedad , Ingestión de Energía , Insulina/sangre , Lípidos/sangre , Masculino , Ratones , Tamaño de los Órganos
5.
Artículo en Inglés | MEDLINE | ID: mdl-20953386

RESUMEN

This paper reports the characterization of the antidiabetic role of a hydroethanolic extract from Parkinsonia aerial parts (HEPA), in normal and alloxan-induced diabetic rats, treated with HEPA (125 and 250 mg/kg; p.o.). Oral glucose tolerance test, acute oral toxicity test and preliminary phytochemical analyses were performed. The diabetic rats treated with HEPA showed a significant reduction in serum and urinary glucose, urinary urea and triglyceride levels, as compared to the diabetic untreated group. However, in the normal treated groups, a significant reduction was found only in serum triglyceride levels. In all treated diabetic groups, an improvement in hepatic glycogen was observed, as well as a decrease in liquid intake and urinary volume, and an enhancement in the weight of skeletal muscles (soleus and extensor digitorum longus), kidneys and epididymal adipose tissue. Nevertheless, body and liver weights were ameliorated only in the diabetic group treated with HEPA (250 mg/kg). Moreover, oral glucose tolerance was higher in animals treated with HEPA, while results also showed that HEPA could be considered toxicologically safe. Phytochemical analysis revealed the presence of tanins, flavonoids and steroids in HEPA. In conclusion, P. aculeata presents an antidiabetic activity and other beneficial effects that ameliorate diabetes and associated complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...