Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Foods ; 12(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36832788

RESUMEN

Along with orange and mandarin, grapefruit production in Florida has declined sharply due to Huanglongbing (HLB), or citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas). HLB affects the volatile profiles of juice and peel oil in oranges, but there is limited information on grapefruit. In this research, 'Ray Ruby' grapefruit were harvested in 2020 and 2021 from healthy (HLB-) and HLB-affected (HLB+) trees. Peel oil was extracted by hydrodistillation, and the volatiles were analyzed by direct injection of the oil samples into gas chromatography-mass spectrometry (GC-MS). Volatiles in the juice were analyzed by headspace (HS)-solid-phase microextraction (SPME) coupled with GC-MS. HLB significantly altered the volatile profiles of peel oil and juice in 'Ray Ruby' grapefruit. Juice samples of HLB+ fruits had lower decanal, nonanal, and octanal, important citrus juice flavor compounds. HLB+ samples also showed reduced content of nonterpene compounds, other aliphatic and terpene aldehydes, and terpene ketones. Ethanol, acetaldehyde, ethyl acetate, and ethyl butanoate were increased in HLB+ juice samples, indicating an HLB-induced stress response. The most abundant compounds D-limonene and ß-caryophyllene, as well as other sesquiterpenes, were increased in HLB+ juice and peel oil samples. On the other hand, the oxidative/dehydrogenated terpenes were increased by HLB in peel oil but decreased in the juice sample. Nootkatone, the key grapefruit volatile was consistently reduced by HLB in both peel oil and juice samples. The impact of HLB on nootkatone deteriorated the quality of both juice and peel oil in grapefruits.

2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012564

RESUMEN

Huanglongbing (otherwise known as HLB or greening) is currently the most devastating citrus disease worldwide. HLB is primarily associated with the phloem-inhabiting bacterium 'Candidatus Liberibacter asiaticus' (CLas). Currently, there are no citrus species resistant to CLas. Genetic transformation is one of the most effective approaches used to induce resistance against plant diseases. Antimicrobial peptides (AMPs) have shown potential breakthroughs to improve resistance to bacterial diseases in plants. In this paper, we confirm the Agrobacterium-mediated transformation of Pera sweet orange expressing the AMP sarcotoxin IA (stx IA) gene isolated from the flesh fly Sarcophaga peregrina and its reaction to CLas, involving plant performance and fruit quality assessments. Four independent transgenic lines, STX-5, STX-11, STX-12, and STX-13, and a non-transgenic control, were graft-inoculated with CLas. Based on our findings, none of the transgenic plants were immune to CLas. However, the STX-5 and STX-11 lines showed reduced susceptibility to HLB with mild disease symptoms and low incidence of plants with the presence of CLas. Fruit and juice quality were not affected by the genetic transformation. Further, no residues of the sarcotoxin IA protein were found in the juice of the STX-11 and STX-12 fruits, though detected in the juice of the STX-5 and STX-13 lines, as revealed by the immunoblotting test. However, juices from all transgenic lines showed low traces of sarcotoxin IA peptide in its composition. The accumulation of this peptide did not cause any deleterious effects on plants or in fruit/juice. Our findings reinforce the challenges of identifying novel approaches to managing HLB.


Asunto(s)
Citrus sinensis , Citrus , Rhizobiaceae , Citrus/microbiología , Citrus sinensis/metabolismo , Frutas , Liberibacter , Péptidos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética
3.
Front Plant Sci ; 13: 915889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720581

RESUMEN

The Brazilian citrus orchards are comprised by few genotypes, which increases the risk of pest and disease outbreaks. The diversification of sweet oranges (Citrus × sinensis) in orchards also generates off-season revenue and extend the fruit processing period. This study aimed to evaluate several horticultural traits of 19 late-season sweet orange selections under citrus canker and huanglongbing (HLB) endemic condition in northwestern Paraná state, Brazil, in a long-term field experiment. Tree size, yield, fruit quality for fresh fruit and industrial markets, estimates of tree density and yield, and citrus canker and huanglongbing (HLB) incidences were assessed. The experimental design was a randomized block with three replicates and five trees per unit. The orchard was drip-irrigated and arranged at tree spacing of 6.5 m × 4.5 m. All scions were graft-compatible with Rangpur lime (C. × limonia). Valencia selections had the tallest trees and largest canopies, particularly Olinda, Frost and #121 with heights and volumes greater than 4.20 m and 43 m3, respectively. Natal África do Sul and Whit's Late Valencia trees were the most productive with cumulative yields above 640 kg per tree. Most of the selections produced fruits of excellent physicochemical quality attending the fresh fruit and industrial market requirements. All selections showed similar horticultural characteristics for the fresh market, while Natal África do Sul and Charmute de Brotas were more suitable for juice processing. Frost Valencia and Valencia Late Fla. had the highest incidence of citrus canker on fruits (>20%), whereas IPR Folha Murcha, Charmute de Brotas and some Valencia selections (Chafeei Late, Campbell 479, Campbell 294, Olinda, Mutação and Whit's Late) exihibed low incidence (3.0-17.7%). At 9 years, Valencia Mutação trees had high HLB incidence (93%). In contrast, Natal IAC and Folha Murcha IAC showed the lowest HLB incidence (13%). Our results revealed that Natal IAC, Folha Murcha IAC, IPR Folha Murcha, Natal Murcha, Campbell 479 Valencia and Valencia Late Fla. had the best horticultural performance in addition to low HLB incidence. Together, these late-season sweet oranges are the most advantageous selections for citrus orchard diversification under citrus canker and HLB endemic conditions in humid subtropical regions.

4.
Front Plant Sci ; 12: 777078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868177

RESUMEN

In recent years, the pressure for replanting and resetting huanglongbing (HLB or citrus greening) affected citrus groves has led to an inadequate seed supply for the most popular rootstock cultivars in the State of Florida, United States. Early fruit harvesting of citrus rootstock source trees might reduce fruit losses and enhance seed availability, especially in HLB-endemic and hurricane susceptible areas, if the physiological quality of the seeds is adequate. The effects of fruit maturity on seed quality and seedling performance of US-802, US-897, and US-942 citrus rootstocks were investigated for two consecutive growing seasons. The study included the evaluation of seed germination and nursery performance of the citrus rootstock seedlings. The germination test was performed in vitro, where seeds were hand-peeled, surface-sterilized and placed in culture tubes containing basal Murashige and Skoog medium. For the emergence test, seeds were sown in seedling trays containing sterilized growing substrate in a greenhouse with controlled-environment conditions. Rootstock fruits from all three varieties harvested in August and September had seeds with higher germination potential, as more than 90% of the seeds generated seedlings. US-942 had more % of emergence than US-802 and US-897, resulting in faster seed germination; in contrast, US-802 had the faster shoot growth rate. Assays on fruit abscission response showed that by August, fruit from all three varieties were responsive to ethylene and abscised, although response varied and was higher in US-942, suggesting the seeds were mature enough. Taken together, our findings indicate that fruits these three rootstocks can be harvested as early as August in contrast to the current procedures without losing germination potential. This will result in an increase in available seeds for nurseries in Florida.

5.
Front Plant Sci ; 12: 777871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987531

RESUMEN

Rootstocks modulate several characteristics of citrus trees, including vegetative growth, fruit yield and quality, and resistance or tolerance to pests, diseases, soil drought, and salinity, among other factors. There is a shortage of scion and rootstock cultivars among the combinations planted in Brazil. "Ponkan" mandarin and "Murcott" tangor grafted on "Rangpur" lime comprise the majority of the commercial mandarin orchards in Brazil. This low genetic diversity of citrus orchards can favor pest and disease outbreaks. This study aimed to evaluate the agronomic performance, Huanglongbing (HLB) tolerance, and fruit quality of "Emperor" mandarin on five different rootstocks for nine cropping seasons under the subtropical soil-climate conditions of the North region of the state of Paraná, Brazil. The experimental design was a randomized block, with six replications, two trees per block, and five rootstocks, including "Rangpur" lime, "Cleopatra," and "Sunki" mandarins, "Swingle" citrumelo, and "Fepagro C-13" citrange. The evaluations included tree growth, yield performance, fruit quality, and HLB disease incidence. "Emperor" mandarin trees grafted on "Rangpur" lime and "Swingle" citrumelo had early fruiting and high yield efficiency. "Rangpur" lime also induced the lowest tree growth, but low fruit quality. Trees on "Swingle" citrumelo and "Fepagro C-13" citrange showed low scion and rootstock affinity and produced fruits with high total soluble solids (TSS), with a lower number of seeds for those from trees on "Fepagro C-13" citrange. "Cleopatra" and "Sunki" mandarins induced higher juice content, while fruits from trees on "Cleopatra" also had higher TSS/titratable acidity (TA) ratio. "Emperor" mandarin trees were susceptible to HLB regardless of the rootstocks. Overall, "Cleopatra" and "Sunki" mandarins, "Swingle" citrumelo, and "Fepagro C-13" are more suitable rootstocks for "Emperor" mandarin under Brazilian subtropical conditions than "Rangpur" lime.

6.
Genet. mol. biol ; 28(3): 446-451, July-Sept. 2005. ilus, tab
Artículo en Inglés | LILACS | ID: lil-416327

RESUMEN

Xanthomonas axonopodis pv. citri strains that cause disease in citrus were investigated by pulsed field and plasmid profile analysis. For the first method, genomic DNA was digested by the rare-cutting enzymes Xba I and Vsp I. The strains evaluated were collected in seven different States of Brazil and in Argentina, Bolivia, Paraguay and Uruguay. Genetic variability was found among strains of X. axonopodis pv. citri from different geographical areas Argentina, Bolivia and Uruguay, with similarities varying from 0.62 to 0.83. However, the strains collected in Brazil, despite being from different States, have shown a genetic similarity ranging from 0.83 to 1.00. Cluster analysis showed a relationship between genomic similarity and geographical origin of the strains. Plasmids were observed in all strains, with a total of five different plasmids, with sizes between 57.7 and 83.0 kilobases. The 72.6 kb plasmid was the most frequent, present in 15 out of 22 strains, while the 68.1 kb plasmid was observed in two strains only. Although the plasmid diversity detected in the present study was not very great, the X. axonopodis pv. citri strains evaluated showed a considerable degree of diversity with regard to this extrachromosomal genetic element.


Asunto(s)
Xanthomonas/genética , Enfermedades de las Plantas/microbiología , Electroforesis en Gel de Campo Pulsado , Variación Genética , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...