Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 900: 165627, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37495128

RESUMEN

Shrubland ecosystems across Europe face a range of threats including the potential impacts of climate change. Within the INCREASE project, six shrubland ecosystems along a European climatic gradient were exposed to ecosystem-level year-round experimental nighttime warming and long-term, repeated growing season droughts. We quantified the ecosystem level CO2 fluxes, i.e. gross primary productivity (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE), in control and treatment plots and compared the treatment effects along the Gaussen aridity index. In general, GPP exhibited higher sensitivity to drought and warming than Reco and was found to be the dominant contributor to changes in overall NEE. Across the climate gradient, northern sites were more likely to have neutral to positive responses of NEE, i.e. increased CO2 uptake, to drought and warming partly due to seasonal rewetting. While an earlier investigation across the same sites showed a good cross-site relationship between soil respiration responses to climate over the Gaussen aridity index, the responses of GPP, Reco and NEE showed a more complex response pattern suggesting that site-specific ecosystem traits, such as different growing season periods and plant species composition, affected the overall response pattern of the ecosystem-level CO2 fluxes. We found that the observed response patterns of GPP and Reco rates at the six sites could be explained well by the hypothesized position of each site on site-specific soil moisture response curves of GPP/Reco fluxes. Such relatively simple, site-specific analyses could help improve our ability to explain observed CO2 flux patterns in larger meta-analyses as well as in larger-scale model upscaling exercises and thereby help improve our ability to project changes in ecosystem CO2 fluxes in response to future climate change.


Asunto(s)
Sequías , Ecosistema , Dióxido de Carbono/análisis , Ciclo del Carbono , Suelo , Respiración , Estaciones del Año
2.
Ambio ; 51(12): 2462-2477, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35793012

RESUMEN

The degradation of ecosystems threatens the provision of ecosystem services and limits human well-being. This systematic literature review evaluates the threats surrounding cultural ecosystem services (CES), namely recreation and landscape aesthetics in European permanent grasslands. We identified underlying causes, direct threats, consequences and suggested solutions for threat mitigation. The most common threats were land-use and management change processes, followed by social attitude, industrial developments and natural threats. However, recreational activities also created negative feedback, affecting the ecosystem, biodiversity and CES, most frequently in the form of various touristic activities. Suggested solutions were most commonly socio-economic and institutional measures to enhance rural communities, as well as improving communication with relevant stakeholders. CES play a crucial role in reconnecting people with nature, and their consequent acknowledgement and incorporation into future ecosystem service frameworks and agri-environmental policy developments are key elements in supporting future sustainable grassland management.


Asunto(s)
Ecosistema , Pradera , Humanos , Conservación de los Recursos Naturales , Agricultura , Biodiversidad
3.
Environ Pollut ; 300: 118999, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176412

RESUMEN

Soil acidification has negative impacts on grass biomass production and the potential of grasslands to mitigate greenhouse gas (GHG) emissions. Through a global review of research on liming of grasslands, the objective of this paper was to assess the impacts of liming on soil pH, grass biomass production and total net GHG exchange (nitrous oxide (N2O), methane (CH4) and net carbon dioxide (CO2)). We collected 57 studies carried out at 88 sites and covering different countries and climatic zones. All of the studies examined showed that liming either reduced or had no effects on the emissions of two potent greenhouse gases (N2O and CH4). Though liming of grasslands can increase net CO2 emissions, the impact on total net GHG emission is minimal due to the higher global warming potential, over a 100-year period, of N2O and CH4 compared to that of CO2. Liming grassland delivers many potential advantages, which justify its wider adoption. It significantly ameliorates soil acidity, increases grass productivity, reduces fertiliser requirement and increases species richness. To realise the maximum benefit of liming grassland, we suggest that acidic soils should be moderately limed within the context of specific climates, soils and management.


Asunto(s)
Gases de Efecto Invernadero , Biomasa , Dióxido de Carbono/análisis , Pradera , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo
4.
PLoS One ; 13(11): e0206672, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30383800

RESUMEN

Interactions between people and ecological systems, through leisure or tourism activities, form a complex socio-ecological spatial network. The analysis of the benefits people derive from their interactions with nature-also referred to as cultural ecosystem services (CES)-enables a better understanding of these socio-ecological systems. In the age of information, the increasing availability of large social media databases enables a better understanding of complex socio-ecological interactions at an unprecedented spatio-temporal resolution. Within this context, we model and analyze these interactions based on information extracted from geotagged photographs embedded into a multiscale socio-ecological network. We apply this approach to 16 case study sites in Europe using a social media database (Flickr) containing more than 150,000 validated and classified photographs. After evaluating the representativeness of the network, we investigate the impact of visitors' origin on the distribution of socio-ecological interactions at different scales. First at a global scale, we develop a spatial measure of attractiveness and use this to identify four groups of sites. Then, at a local scale, we explore how the distance traveled by the users to reach a site affects the way they interact with this site in space and time. The approach developed here, integrating social media data into a network-based framework, offers a new way of visualizing and modeling interactions between humans and landscapes. Results provide valuable insights for understanding relationships between social demands for CES and the places of their realization, thus allowing for the development of more efficient conservation and planning strategies.


Asunto(s)
Ecosistema , Modelos Teóricos , Medios de Comunicación Sociales , Adulto , Conservación de los Recursos Naturales , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fotograbar , Factores Socioeconómicos , Análisis Espacial , Viaje
5.
Sci Rep ; 7: 43952, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256623

RESUMEN

Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.

6.
Glob Chang Biol ; 22(7): 2570-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26946322

RESUMEN

Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.


Asunto(s)
Clima , Ecología/métodos , Ecosistema , Lluvia , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...