Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(22): 25722-25730, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618661

RESUMEN

The potential of Fe2TiSn full-Heusler compounds for thermoelectric applications has been suggested theoretically, but not yet proven experimentally, due to the difficulty in obtaining reproducible, homogeneous, phase-pure and defect-free samples. In this work, we studied Fe2TiSn1-xSbx polycrystals (x from 0 to 0.6), fabricated by high-frequency melting and long-time high-temperature annealing. We obtained fairly good phase purity, a homogeneous microstructure, and good matrix stoichiometry. Although the intrinsic p-type transport behavior is dominant, n-type charge compensation by Sb-doping is demonstrated. Calculations of the formation energy of defects and electronic properties carried out using the density functional theory formalism reveal that charged iron vacancies VFe2- are the dominant defects responsible for the intrinsic p-type doping of Fe2TiSn under all types of (except Fe-rich) growing conditions. In addition, Sb substitutions at the Sn site give rise either to SbSn, SbSn1+, which are responsible for n-type doping and magnetism (SbSn) or to magnetic SbSn1-, which act as additional p-type dopants. Our experimental data highlight good thermoelectric properties close to room temperature, with Seebeck coefficients up to 56 µV/K in the x = 0.2 sample and power factors up to 4.8 × 10-4 W m-1 K-2 in the x = 0.1 sample. Our calculations indicate the appearance of a pseudogap under Ti-rich conditions and a large Sb-doping level, possibly improving further the thermoelectric properties.

2.
Adv Sci (Weinh) ; 5(8): 1800242, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30128239

RESUMEN

Polar discontinuities occurring at interfaces between two materials constitute both a challenge and an opportunity in the study and application of a variety of devices. In order to cure the large electric field occurring in such structures, a reconfiguration of the charge landscape sets in at the interface via chemical modifications, adsorbates, or charge transfer. In the latter case, one may expect a local electronic doping of one material: one example is the two-dimensional electron liquid (2DEL) appearing in SrTiO3 once covered by a polar LaAlO3 layer. Here, it is shown that tuning the formal polarization of a (La,Al)1-x (Sr,Ti) x O3 (LASTO:x) overlayer modifies the quantum confinement of the 2DEL in SrTiO3 and its electronic band structure. The analysis of the behavior in magnetic field of superconducting field-effect devices reveals, in agreement with ab initio calculations and self-consistent Poisson-Schrödinger modeling, that quantum confinement and energy splitting between electronic bands of different symmetries strongly depend on the interface total charge densities. These results strongly support the polar discontinuity mechanisms with a full charge transfer to explain the origin of the 2DEL at the celebrated LaAlO3/SrTiO3 interface and demonstrate an effective tool for tailoring the electronic structure at oxide interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA