Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37205454

RESUMEN

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.

2.
ACS Chem Biol ; 18(9): 2063-2072, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37671702

RESUMEN

The bacterial cell envelope provides a protective barrier that is challenging for small molecules and biomolecules to cross. Given the anionic nature of both Gram-positive and Gram-negative bacterial cell envelopes, negatively charged molecules are particularly difficult to deliver into these organisms. Many strategies have been employed to penetrate bacteria, ranging from reagents such as cell-penetrating peptides, enzymes, and metal-chelating compounds to physical perturbations. While cationic polymers are known antimicrobial agents, polymers that promote the permeabilization of bacterial cells without causing high levels of toxicity and cell lysis have not yet been described. Here, we investigate four polymers that display a cationic poly(2-(dimethylamino)ethyl methacrylate (D) block for the internalization of an anionic adenosine triphosphate (ATP)-based chemical probe into Escherichia coli and Bacillus subtilis. We evaluated two polymer architectures, linear and micellar, to determine how shape and hydrophobicity affect internalization efficiency. We found that, in addition to these reagents successfully promoting probe internalization, the probe-labeled cells were able to continue to grow and divide. The micellar structures in particular were highly effective for the delivery of the negatively charged chemical probe. Finally, we demonstrated that these cationic polymers could act as general permeabilization reagents, promoting the entry of other molecules, such as antibiotics.


Asunto(s)
Adenosina Trifosfato , Antibacterianos , Antibacterianos/farmacología , Bacillus subtilis , Cationes , Muerte Celular , Escherichia coli
3.
Curr Opin Chem Biol ; 76: 102359, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37406424

RESUMEN

Bacteria comprise complex communities within our bodies and largely have beneficial roles, however a small percentage are pathogenic. While all pathogens are important to public health, immediate action is necessary to combat bacterial strains developing pan- and multi-resistance to antibiotics. As present therapeutics fail to tackle this problem, novel strategies are required to address this threat. Activity-based probes (ABPs) are one method to investigate proteins of interest in pathogens. These probes can serve multiple purposes to better our understanding of bacterial pathogenicity. Herein, we highlight recent studies that used ABPs to identify new drug targets or visualize antibiotic resistance- or bacterial virulence-associated proteins, and introduce strategies to determine the specificity of ABPs within a targeted enzyme class.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
4.
Methods Enzymol ; 664: 59-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35331379

RESUMEN

Histidine kinases (HKs) are sensor proteins found ubiquitously in prokaryotes. They are the first protein in two-component systems (TCSs), signaling pathways that respond to a myriad of environmental stimuli. TCSs are typically comprised of a HK and its cognate response regulator (RR) which often acts as a transcription factor. RRs will bind DNA and ultimately lead to a cellular response. These cellular outputs vary widely, but HKs are particularly interesting as they are tied to antibiotic resistance and virulence pathways in pathogenic bacteria, making them promising drug targets. We anticipate that HK inhibitors could serve as either standalone antibiotics or antivirulence therapies. Additionally, while the cellular response mediated by the HKs is often well-characterized, very little is known about which stimuli trigger the sensor kinase to begin the phosphorylation cascade. Studying HK activity and enrichment of active HKs through activity-based protein profiling will enable these stimuli to be elucidated, filling this fundamental gap in knowledge. Here, we describe methods to evaluate the potency of putative HK inhibitors in addition to methods to calculate kinetic parameters of various activity-based probes designed for the HKs.


Asunto(s)
Histidina , Proteínas Quinasas , Adenosina Trifosfato , Bacterias/metabolismo , Histidina Quinasa/genética , Proteínas Quinasas/genética
5.
RSC Chem Biol ; 1(5): 333-351, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33928252

RESUMEN

Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...