Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Caries Res ; 58(2): 90-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198757

RESUMEN

INTRODUCTION: This study investigated the changes in the acquired enamel pellicle (AEP) proteome when this integument is formed in vivo after treatment with sugarcane-derived cystatin (CaneCPI-5), hemoglobin (HB), and a statherin-derived peptide (StN15), or their combination and then exposed to an intrinsic acid challenge. The effectiveness of these treatments in preventing intrinsic erosion was also evaluated. METHODS: Ten volunteers, after prophylaxis, in 5 crossover phases, rinsed with the following solutions (10 mL, 1 min): control (deionized water-H2O) - group 1, 0.1 mg/mL CaneCPI-5 - group 2, 1.0 mg/mL HB - group 3, 1.88 × 10-5M StN15 - group 4, or a blend of these - group 5. Following this, AEP formation occurred (2 h) and an enamel biopsy (10 µL, 0.01 m HCl, pH 2.0, 10 s) was conducted on one incisor. The biopsy acid was then analyzed for calcium (Arsenazo method). The vestibular surfaces of the other teeth were treated with the same acid. Acid-resistant proteins in the residual AEP were then collected and analyzed quantitatively via proteomics. RESULTS: Compared to control, treatment with the proteins/peptide, mixed or isolated, markedly enhanced acid-resistant proteins in the AEP. Notable increases occurred in pyruvate kinase PKM (11-fold, CaneCPI-5), immunoglobulins and submaxillary gland androgen-regulated protein 3B (4-fold, StN15), Hb, and lysozyme C (2-fold, StN15). Additionally, a range of proteins not commonly identified in the AEP but known to bind calcium or other proteins were identified in groups treated with the tested proteins/peptide either in isolation or as a mixture. The mean (SD, mM) calcium concentrations released from enamel were 3.67 ± 1.48a, 3.11 ± 0.72a, 1.94 ± 0.57b, 2.37 ± 0.90a, and 2.38 ± 0.45a for groups 1-5, respectively (RM-ANOVA/Tukey, p < 0.05). CONCLUSIONS: Our findings demonstrate that all treatments, whether using a combination of proteins/peptides or in isolation, enhanced acid-resistant proteins in the AEP. However, only HB showed effectiveness in protecting against intrinsic erosive demineralization. These results pave the way for innovative preventive methods against intrinsic erosion, using "acquired pellicle engineering" techniques.


Asunto(s)
Calcio , Erosión de los Dientes , Humanos , Calcio/metabolismo , Película Dental , Péptidos , Proteoma , Erosión de los Dientes/prevención & control , Hemoglobinas/metabolismo
2.
J Dent ; 102: 103478, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32950632

RESUMEN

OBJECTIVES: To evaluate, in vivo: 1) proteomic alterations in the acquired enamel pellicle (AEP) after treatment with sugarcane-derived cystatin (CaneCPI-5), hemoglobin (HB), statherin-derived peptide (StN15) or their combination before the formation of the AEP and subsequent erosive challenge; 2) the protection of these treatments against erosive demnineralization. MATERIALS AND METHODS: In 5 crossover phases, after prophylaxis, 10 volunteers rinsed (10 mL, 1 min) with: deionized water-1, 0.1 mg/mL CaneCPI-5-2, 1.0 mg/mL HB-3, 1.88 × 10-5 M StN15-4 or their combination-5. AEP was formed (2 h) and enamel biopsy (10 µL, 1%citric acid, pH 2.5, 10 s) was performed on one incisor for calcium analysis. The same acid was applied on the vestibular surfaces of the remaining teeth. The acid-resistant proteins within the remaining AEP were collected. Samples were quantitatively analyzed by label-free proteomics. RESULTS: Treatment with the proteins/peptide, isolated or combined, increased several acid-resistant proteins in the AEP, compared with control. The highest increases were seen for PRPs (32-fold, StN15), profilin (15-fold, combination), alpha-amylase (9-fold; StN15), keratins (8-fold, CaneCPI-5 and HB), Histatin-1 (7-fold, StN15), immunoglobulins (6.5-fold, StN15), lactotransferrin (4-fold, CaneCPI-5), cystatins, lysozyme, protein S-100-A9 and actins (3.5-fold, StN15), serum albumin (3.5-fold, CaneCPI-5 and HB) and hemoglobin (3-fold, StN15). Annexin, calmodulin, keratin, tubulin and cystatins were identified exclusively upon treatment with the proteins/peptide, alone or combined. Groups 2, 3 and 4 had significantly lower Ca released from enamel compared to group 1 (Kruskal-Wallis/Dunn's, p < 0.05). CONCLUSIONS: Treatment with CaneCPI-5, HB or StN15 remarkably increases acid-resistant proteins in the AEP, protecting against erosion. CLINICAL SIGNIFICANCE: Our results show, for the first time, that treatment with proteins/peptide remarkably increases acid-resistant proteins in the AEP, protecting against erosive demineralization. These findings open an avenue for a new preventive approach for erosive demineralization, employing acquired pellicle engineering procedures that may in the future be incorporated into dental products.


Asunto(s)
Desmineralización Dental , Erosión de los Dientes , Esmalte Dental , Película Dental , Humanos , Péptidos , Proteómica , Desmineralización Dental/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...