Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (188)2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36342164

RESUMEN

The kinase Receptor-interacting serine/threonine protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like (MLKL) are critical regulators of necroptosis, an inflammatory form of cell death with important antiviral functions. Autophosphorylation of RIPK3 induces phosphorylation and activation of the pore-forming executioner protein of necroptosis MLKL. Trafficking and oligomerization of phosphorylated MLKL at the cell membrane results in cell lysis, characteristic of necroptotic cell death. The nucleic acid sensor ZBP1 is activated by binding to left-handed Z-form double-stranded RNA (Z-RNA) after infection with RNA and DNA viruses. ZBP1 activation restricts virus infection by inducing regulated cell death, including necroptosis, of infected host cells. Immunofluorescence microscopy permits the visualization of different signaling steps downstream of ZBP1-mediated necroptosis on a per-cell basis. However, the sensitivity of standard fluorescence microscopy, using current commercially available phospho-specific antibodies against human RIPK3 and MLKL, precludes reproducible imaging of these markers. Here, we describe an optimized staining procedure for serine (S) phosphorylated RIPK3 (S227) and MLKL (S358) in human HT-29 cells infected with herpes simplex virus 1 (HSV-1). The inclusion of a tyramide signal amplification (TSA) step in the immunofluorescent staining protocol allows the specific detection of S227 phosphorylated RIPK3. Moreover, TSA greatly increases the sensitivity of the detection of S358 phosphorylated MLKL. Together, this method enables the visualization of these two critical signaling events during the induction of ZBP1-induced necroptosis.


Asunto(s)
Herpes Simple , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Humanos , Apoptosis , Herpesvirus Humano 1/genética , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , ARN Bicatenario , Serina/metabolismo , Coloración y Etiquetado
2.
Front Oncol ; 12: 892813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903697

RESUMEN

Irradiation induces distinct cellular responses such as apoptosis, necroptosis, iron-dependent cell death (a feature of ferroptosis), senescence, and mitotic catastrophe. Several of these outcomes are immunostimulatory and may represent a potential for immunogenic type of cell death (ICD) induced by radiotherapy triggering abscopal effects. The purpose of this study is to determine whether intra-tumoral ICD markers can serve as biomarkers for the prediction of patient's outcomes defined as the metastasis status and survival over a 5-year period. Thirty-eight patients with locally advanced cervical cancer, treated with neoadjuvant chemoradiotherapy using cisplatin were included in this study. Pre-treatment tumor biopsy and post-treatment hysterectomy samples were stained for cell death markers and danger associated molecular patterns (DAMPs): cleaved caspase-3 (apoptosis), phosphorylated mixed lineage kinase domain like pseudokinase (pMLKL; necroptosis), glutathione peroxidase 4 (GPX4; ferroptosis) and 4-hydroxy-2-noneal (4-HNE; ferroptosis), high mobility group box 1 (HMGB1) and calreticulin. Although these markers could not predict the patient's outcome in terms of relapse or survival, many significantly correlated with immune cell infiltration. For instance, inducing ferroptosis post-treatment seems to negatively impact immune cell recruitment. Measuring ICD markers could reflect the impact of treatment on the tumor microenvironment with regard to immune cell recruitment and infiltration. One Sentence Summary: Cell death readouts during neoadjuvant chemoradiation in cervical cancer.

3.
Mol Cancer Res ; 20(10): 1532-1547, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35749080

RESUMEN

High-grade serous ovarian cancer (HGSOC) is responsible for the largest number of ovarian cancer deaths. The frequent therapy-resistant relapses necessitate a better understanding of mechanisms driving therapy resistance. Therefore, we mapped more than a hundred thousand cells of HGSOC patients in different phases of the disease, using single-cell RNA sequencing. Within patients, we compared chemonaive with chemotreated samples. As such, we were able to create a single-cell atlas of different HGSOC lesions and their treatment. This revealed a high intrapatient concordance between spatially distinct metastases. In addition, we found remarkable baseline differences in transcriptomics of ascitic and solid cancer cells, resulting in a different response to chemotherapy. Moreover, we discovered different robust subtypes of cancer-associated fibroblasts (CAF) in all patients. Besides inflammatory CAFs, vascular CAFs, and matrix CAFs, we identified a new CAF subtype that was characterized by high expression of STAR, TSPAN8, and ALDH1A1 and clearly enriched after chemotherapy. Together, tumor heterogeneity in both cancer and stromal cells contributes to therapy resistance in HGSOC and could form the basis of novel therapeutic strategies that differentiate between ascitic and solid disease. IMPLICATIONS: The newly characterized differences between ascitic and solid cancer cells before and after chemotherapy could inform novel treatment strategies for metastatic HGSOC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Tetraspaninas
4.
BMC Cancer ; 22(1): 451, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468745

RESUMEN

BACKGROUND: Nonclustered mouse protocadherin genes (Pcdh) encode proteins with a typical single ectodomain and a cytoplasmic domain with conserved motifs completely different from those of classic cadherins. Alternative splice isoforms differ in the size of these cytoplasmic domains. In view of the compelling evidence for gene silencing of protocadherins in human tumors, we started investigations on Pcdh functions in mouse cancer models. METHODS: For Pcdh10, we generated two mouse lines: one with floxed exon 1, leading to complete Pcdh10 ablation upon Cre action, and one with floxed exons 2 and 3, leading to ablation of only the long isoforms of Pcdh10. In a mouse medulloblastoma model, we used GFAP-Cre action to locally ablate Pcdh10 in combination with Trp53 and Rb1 ablation. From auricular tumors, that also arose, we obtained tumor-derived cell lines, which were analyzed for malignancy in vitro and in vivo. By lentiviral transduction, we re-expressed Pcdh10 cDNAs. RNA-Seq analyses were performed on these cell families. RESULTS: Surprisingly, not only medulloblastomas were generated in our model but also tumors of tagged auricles (pinnae). For both tumor types, ablation of either all or only long isoforms of Pcdh10 aggravated the disease. We argued that the perichondrial stem cell compartment is at the origin of the pinnal tumors. Immunohistochemical analysis of these tumors revealed different subtypes. We obtained several pinnal-tumor derived (PTD) cell lines and analyzed these for anchorage-independent growth, invasion into collagen matrices, tumorigenicity in athymic mice. Re-expression of either the short or a long isoform of Pcdh10 in two PTD lines counteracted malignancy in all assays. RNA-Seq analyses of these two PTD lines and their respective Pcdh10-rescued cell lines allowed to identify many interesting differentially expressed genes, which were largely different in the two cell families. CONCLUSIONS: A new mouse model was generated allowing for the first time to examine the remarkable tumor suppression activity of protocadherin-10 in vivo. Despite lacking several conserved motifs, the short isoform of Pcdh10 was fully active as tumor suppressor. Our model contributes to scrutinizing the complex molecular mechanisms of tumor initiation and progression upon PCDH10 silencing in many human cancers.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Meduloblastoma/genética , Ratones , Isoformas de Proteínas/genética , Protocadherinas
6.
EMBO Rep ; 23(1): e53083, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34699114

RESUMEN

Here, we investigate the impact of hypoxia on the hepatic response of glucocorticoid receptor (GR) to dexamethasone (DEX) in mice via RNA-sequencing. Hypoxia causes three types of reprogramming of GR: (i) much weaker induction of classical GR-responsive genes by DEX in hypoxia, (ii) a number of genes is induced by DEX specifically in hypoxia, and (iii) hypoxia induces a group of genes via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Transcriptional profiles are reflected by changed GR DNA-binding as measured by ChIP sequencing. The HPA axis is induced by hypothalamic HIF1α and HIF2α activation and leads to GR-dependent lipolysis and ketogenesis. Acute inflammation, induced by lipopolysaccharide, is prevented by DEX in normoxia but not during hypoxia, and this is attributed to HPA axis activation by hypoxia. We unfold new physiological pathways that have consequences for patients suffering from GC resistance.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Nature ; 596(7871): 262-267, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349263

RESUMEN

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Asunto(s)
Apoptosis , Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Intestinos/citología , Intestinos/microbiología , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Enfermedades Transmitidas por los Alimentos/microbiología , Vida Libre de Gérmenes , Interacciones Huésped-Patógeno , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Masculino , Ratones , Mucositis/inducido químicamente , Salmonella/enzimología , Salmonella/genética , Salmonella/crecimiento & desarrollo , Salmonella/metabolismo , Transcriptoma , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34406363

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.


Asunto(s)
Ciclina D2/genética , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Aloinjertos , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Ciclina D2/metabolismo , Regulación Neoplásica de la Expresión Génica , Linfoma de Células del Manto/tratamiento farmacológico , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Células Neoplásicas Circulantes , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
iScience ; 23(10): 101557, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083726

RESUMEN

The protease MALT1 is a key regulator of NF-κB signaling and a novel therapeutic target in autoimmunity and cancer. Initial enthusiasm supported by preclinical results with MALT1 inhibitors was tempered by studies showing that germline MALT1 protease inactivation in mice results in reduced regulatory T cells and lethal multi-organ inflammation due to expansion of IFN-γ-producing T cells. However, we show that long-term MALT1 inactivation, starting in adulthood, is not associated with severe systemic inflammation, despite reduced regulatory T cells. In contrast, IL-2-, TNF-, and IFN-γ-producing CD4+ T cells were strongly reduced. Limited formation of tertiary lymphoid structures was detectable in lungs and stomach, which did not affect overall health. Our data illustrate that MALT1 inhibition in prenatal or adult life has a different outcome and that long-term MALT1 inhibition in adulthood is not associated with severe side effects.

10.
Sci Rep ; 9(1): 16623, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719598

RESUMEN

Upon intravenous injection of tumour necrosis factor (TNF) in mice, a systemic inflammatory response syndrome (SIRS) is initiated, characterized by an acute cytokine storm and induction of vascular hyperpermeability. Connexin43 hemichannels have been implicated in various pathological conditions, e.g. ischemia and inflammation, and can lead to detrimental cellular outcomes. Here, we explored whether targeting connexin43 hemichannels could alleviate TNF-induced endothelial barrier dysfunction and lethality in SIRS. Therefore, we verified whether administration of connexin43-targeting-peptides affected survival, body temperature and vascular permeability in vivo. In vitro, TNF-effects on connexin43 hemichannel function were investigated by single-channel studies and Ca2+-imaging. Blocking connexin43 hemichannels with TAT-Gap19 protected mice against TNF-induced mortality, hypothermia and vascular leakage, while enhancing connexin43 hemichannel function with TAT-CT9 provoked opposite sensitizing effects. In vitro patch-clamp studies revealed that TNF acutely activated connexin43 hemichannel opening in endothelial cells, which was promoted by CT9, and inhibited by Gap19 and intracellular Ca2+-buffering. In vivo experiments aimed at buffering intracellular Ca2+, and pharmacologically targeting Ca2+/calmodulin-dependent protein kinase-II, a known modulator of endothelial barrier integrity, demonstrated their involvement in permeability alterations. Our results demonstrate significant benefits of inhibiting connexin43 hemichannels to counteract TNF-induced SIRS-associated vascular permeability and lethality.


Asunto(s)
Conexina 43/antagonistas & inhibidores , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Factor de Necrosis Tumoral alfa/farmacología , Animales , Permeabilidad Capilar/efectos de los fármacos , Quimiocinas/metabolismo , Conexina 43/metabolismo , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología , Síndrome de Respuesta Inflamatoria Sistémica/prevención & control , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
11.
J Allergy Clin Immunol ; 144(6): 1648-1659.e9, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31330218

RESUMEN

BACKGROUND: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS: Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS: HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION: ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.


Asunto(s)
Asma/inmunología , Ceramidas/inmunología , Metabolismo de los Lípidos/inmunología , Proteínas de la Membrana/inmunología , Células Th2/inmunología , Animales , Asma/genética , Ceramidas/genética , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Células Th2/patología
12.
Sci Rep ; 9(1): 10577, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332244

RESUMEN

In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.


Asunto(s)
Neoplasias Hematológicas/genética , Oncogenes/genética , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Femenino , Técnicas de Sustitución del Gen , Genes Reporteros , Neoplasias Hematológicas/etiología , Humanos , Leucemia/etiología , Leucemia/genética , Leucemia Mieloide/genética , Masculino , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Complejo Represivo Polycomb 2/genética , Transactivadores/genética , Proteínas Supresoras de Tumor/genética
13.
BMC Cancer ; 19(1): 598, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208373

RESUMEN

BACKGROUND: NANOS3 is a gene conserved throughout evolution. Despite the quite low conservation of Nanos sequences between different organisms and even between Nanos paralogs, their role in germ cell development is remarkably universal. Human Nanos3 expression is normally restricted to the gonads and the brain. However, ectopic activation of this gene has been detected in various human cancers. Until now, Nanos3 and other Nanos proteins have been studied almost exclusively in germ cell development. METHODS: Transgenic mice were generated by targeted insertion of a human Nanos3 cDNA into the ROSA26 locus. The transgene could be spatiotemporally induced by Cre recombinase activity removing an upstream floxed STOP cassette. A lung tumor model with ectopic Nanos3 expression was based on the lung-specific activation of the reverse tetracycline transactivator gene, in combination with a tetO-CMV promoter controlling Cre expression. When doxycycline was provided to the mice, Cre was activated leading to deletion of TP53 alleles and activation of both oncogenic KRasG12D and Nanos3. Appropriate controls were foreseen. Tumors and tumor-derived cell cultures were analyzed in various ways. RESULTS: We describe the successful generation of Nanos3LSL/- and Nanos3LSL/LSL mice in which an exogenous human NANOS3 gene can be activated in vivo upon Cre expression. These mice, in combination with different conditional and doxycycline-inducible Cre lines, allow the study of the role of ectopic Nanos3 expression in several cancer types. The Nanos3LSL mice were crossed with a non-small cell lung cancer (NSCLC) mouse model based on conditional expression of oncogenic KRas and homozygous loss of p53. This experiment demonstrated that ectopic expression of Nanos3 in the lungs has a significant negative effect on survival. Enhanced bronchiolar dysplasia was observed when Nanos3-expressing NSCLC mice were compared with control NSCLC mice. An allograft experiment, performed with cell cultures derived from primary lung tumors of control and Nanos3-expressing NSCLC mice, revealed lymph node metastasis in mice injected with Nanos3-expressing NSCLC cells. CONCLUSIONS: A new mouse model was generated allowing examination of Nanos3-associated pathways and investigation of the influence of ectopic Nanos3 expression in various cancer types. This model might identify Nanos3 as an interesting target in cancer therapeutics.


Asunto(s)
Expresión Génica Ectópica , Ratones , Neoplasias Experimentales/genética , Proteínas de Unión al ARN/genética , Aloinjertos , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Doxiciclina/farmacología , Femenino , Humanos , Integrasas , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Transgenes , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
14.
J Nucl Med ; 59(7): 1140-1145, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29419481

RESUMEN

Systemic inflammatory response syndrome (SIRS) is an inflammatory state affecting the whole body. It is associated with the presence of pro- and antiinflammatory cytokines in serum, including tumor necrosis factor (TNF). TNF has multiple effects and leads to cytokine production, leukocyte infiltration, and blood pressure reduction and coagulation, thereby contributing to tissue damage and organ failure. A sterile mouse model of sepsis, TNF-induced SIRS, was used to visualize the temporal and spatial distribution of damage in susceptible tissues during SIRS. For this, a radiopharmaceutical agent, 99mTc-duramycin, that binds to exposed phosphatidylethanolamine on dying cells was longitudinally visualized using SPECT/CT imaging. Methods: C57BL/6J mice were challenged with intravenous injections of murine TNF or vehicle, and necrostatin-1 was used to interfere with cell death. Two hours after vehicle or TNF treatment, mice received 99mTc-duramycin intravenously (35.44 ± 3.80 MBq). Static whole-body 99mTc-duramycin SPECT/CT imaging was performed 2, 4, and 6 h after tracer injection. Tracer uptake in different organs was quantified by volume-of-interest analysis using PMOD software and expressed as SUVmean After the last scan, ex vivo biodistribution was performed to validate the SPECT imaging data. Lastly, terminal deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining was performed to correlate the obtained results to cell death. Results: An increased 99mTc-duramycin uptake was detected in mice injected with TNF, when compared with control mice, in lungs (0.55 ± 0.1 vs. 0.34 ± 0.05), intestine (0.75 ± 0.13 vs. 0.56 ± 0.1), and liver (1.03 ± 0.14 vs. 0.64 ± 0.04) 4 h after TNF and remained significantly elevated until 8 h after TNF. The imaging results were consistent with ex vivo γ-counting results. Significantly increased levels of tissue damage were detected via TUNEL staining in the lungs and intestine of mice injected with TNF. Interestingly, necrostatin-1 pretreatment conferred protection against lethal SIRS and reduced the 99mTc-duramycin uptake in the lungs 8 h after TNF (SUV, 0.32 ± 0.1 vs. 0.51 ± 0.15). Conclusion: This study demonstrated that noninvasive 99mTc-duramycin SPECT imaging can be used to characterize temporal and spatial kinetics of injury and cell death in susceptible tissues during TNF-induced SIRS, making it useful for global, whole-body assessment of tissue damage during diseases associated with inflammation and injury.


Asunto(s)
Bacteriocinas , Muerte Celular/efectos de los fármacos , Compuestos de Organotecnecio , Fosfatidiletanolaminas/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico por imagen , Síndrome de Respuesta Inflamatoria Sistémica/patología , Factor de Necrosis Tumoral alfa/efectos adversos , Imagen de Cuerpo Entero , Animales , Bacteriocinas/metabolismo , Transporte Biológico/efectos de los fármacos , Imidazoles/farmacología , Indoles/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos de Organotecnecio/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo
15.
J Invest Dermatol ; 137(2): 494-505, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27725202

RESUMEN

Unlike its family member p53, TP63 is rarely mutated in human cancer. However, ΔNp63α protein levels are often elevated in tumors of epithelial origin, such as squamous cell carcinoma and cholangiocarcinoma. To study the oncogenic properties of ΔNp63α in vivo, we generated transgenic mice overexpressing ΔNp63α from the Rosa26 locus promoter controlled by keratin 5-Cre. We found that these mice spontaneously develop epidermal cysts and ectopic ΔNp63α expression in the bile duct epithelium that leads to dilatation of the intrahepatic biliary ducts, to hepatic cyst formation and bile duct adenoma. Moreover, when subjected to models of 7,12-dimethylbenz[a]anthracene-based carcinogenesis, tumor initiation was increased in ΔNp63α transgenic mice in a gene dosage-dependent manner although ΔNp63α overexpression did not alter the sensitivity to 7,12-dimethylbenz[a]anthracene-induced cytotoxicity in vivo. However, keratinocytes isolated from ΔNp63α transgenic mice displayed increased survival and delayed cellular senescence compared with wild-type keratinocytes, marked by decreased p16Ink4a and p19Arf expression. Taken together, we show that increased ΔNp63α protein levels facilitate oncogenic transformation in the epidermis as well as in the bile duct.


Asunto(s)
Neoplasias de los Conductos Biliares/etiología , Transformación Celular Neoplásica , Fosfoproteínas/fisiología , Neoplasias Cutáneas/etiología , Transactivadores/fisiología , 9,10-Dimetil-1,2-benzantraceno , Animales , Células Cultivadas , Senescencia Celular , Hiperplasia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas/análisis , Piel/patología , Acetato de Tetradecanoilforbol , Transactivadores/análisis
16.
PLoS Genet ; 12(8): e1006243, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27556156

RESUMEN

E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.


Asunto(s)
Cadherinas/genética , Cateninas/genética , Diferenciación Celular/genética , Endodermo/crecimiento & desarrollo , Células Madre Embrionarias de Ratones , Animales , Blastocisto/metabolismo , Cadherinas/biosíntesis , Cateninas/biosíntesis , Adhesión Celular/genética , Linaje de la Célula/genética , Polaridad Celular/genética , Cuerpos Embrioides/metabolismo , Desarrollo Embrionario/genética , Endodermo/metabolismo , Humanos , Ratones , Imagen Óptica , Células Madre Pluripotentes/metabolismo , Proteína de Unión al GTP rhoA/biosíntesis , Proteína de Unión al GTP rhoA/genética , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...