Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
medRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766179

RESUMEN

Genetic variants in genes GRIN1 , GRIN2A , GRIN2B , and GRIN2D , which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and therapeutic applications. We assembled missense variants: 201 from patients, 631 from general population, and 159 characterized by electrophysiological readouts showing whether they can enhance or reduce the receptor function. This includes new functional data from 47 variants reported here, for the first time. We found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being key predictive features. Leveraging distances from ligands, we developed two independent machine learning-based predictors for NMDAR missense variants: a pathogenicity predictor which outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these, we reclassified variants of uncertain significance in the ClinVar database and refined a previous genome-informed epidemiological model to estimate the birth incidence of molecular mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an important feature in NMDARs that can enhance variant pathogenicity prediction and enable functional prediction. Further studies with larger numbers of phenotypically and functionally characterized variants will enhance the potential clinical utility of this method.

2.
Methods Mol Biol ; 2799: 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727899

RESUMEN

N-methyl-D-aspartate receptors (NMDAR) are ligand-gated ion channels mediating excitatory neurotransmission and are important for normal brain development, cognitive abilities, and motor functions. Pathogenic variants in the Glutamate receptor Ionotropic N-methyl-D-aspartate (GRIN) genes (GRIN1, GRIN2A-D) encoding NMDAR subunits have been associated with a wide spectrum of neurodevelopmental disorders and epilepsies ranging from treatable focal epilepsies to devastating early-onset developmental and epileptic encephalopathies. Genetic variants in NMDA receptor genes can cause a range of complex alterations to receptor properties resulting in various degrees of loss-of-function, gain-of-function, or mixtures thereof. Understanding how genetic variants affect the function of the receptors, therefore, represents an important first step in the ongoing development towards targeted therapies. Currently, targeted treatment options for GRIN-related diseases are limited. However, treatment with memantine has been reported to significantly reduce seizure frequency in a few individuals with developmental and epileptic encephalopathies harboring de novo gain-of-function GRIN2A missense variants, and supplementary treatment with L-serine has been associated with improved motor and cognitive performance as well as reduced seizure frequency in patients with GRIN2B loss-of-function missense variants as well as GRIN2A and GRIN2B null variants.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Trastornos del Neurodesarrollo/genética , Epilepsia/genética , Epilepsia/tratamiento farmacológico , Predisposición Genética a la Enfermedad , Variación Genética , Memantina/uso terapéutico , Memantina/farmacología
3.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538865

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Asunto(s)
Epilepsia , Receptores de N-Metil-D-Aspartato , Niño , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Epilepsia/genética , Mutación Missense , Fenotipo
4.
Stem Cell Res ; 76: 103372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458029

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are early-onset conditions that cause intractable seizures and developmental delays. Missense variants in Gamma-aminobutyric acid type A receptor (GABAAR) subunits commonly cause DEEs. Ahring et al. (2022) showed a variant in the gene that encodes the delta subunit (GABRD) is strongly associated with the gain-of-function of extrasynaptic GABAAR. Here, we report the generation of two patient-specific human induced pluripotent stem cells (hiPSC) lines with (i) a de novo variant and (ii) a maternal variant, both for the pathogenic GABRD c.872 C>T, (p.T291I). The variants in the generated cell line were corrected using the CRISPR-Cas9 gene editing technique (respective isogenic control lines).


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Epilepsia/genética , Mutación Missense , Edición Génica
5.
Nat Commun ; 15(1): 1294, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378781

RESUMEN

Aneuploidies, and in particular, trisomies represent the most common genetic aberrations observed in human genetics today. To explore the presence of trisomies in historic and prehistoric populations we screen nearly 10,000 ancient human individuals for the presence of three copies of any of the target autosomes. We find clear genetic evidence for six cases of trisomy 21 (Down syndrome) and one case of trisomy 18 (Edwards syndrome), and all cases are present in infant or perinatal burials. We perform comparative osteological examinations of the skeletal remains and find overlapping skeletal markers, many of which are consistent with these syndromes. Interestingly, three cases of trisomy 21, and the case of trisomy 18 were detected in two contemporaneous sites in early Iron Age Spain (800-400 BCE), potentially suggesting a higher frequency of burials of trisomy carriers in those societies. Notably, the care with which the burials were conducted, and the items found with these individuals indicate that ancient societies likely acknowledged these individuals with trisomy 18 and 21 as members of their communities, from the perspective of burial practice.


Asunto(s)
Trastornos de los Cromosomas , Síndrome de Down , Embarazo , Femenino , Humanos , Síndrome de Down/genética , Trisomía/genética , Síndrome de la Trisomía 18/genética , Trastornos de los Cromosomas/genética , ADN Antiguo , Síndrome de la Trisomía 13
6.
Ann Neurol ; 95(2): 365-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964487

RESUMEN

OBJECTIVE: Variants in several potassium channel genes, including KCNA1 and KCNA2, cause Developmental and Epileptic Encephalopathies (DEEs). We investigated whether variants in KCNA3, another mammalian homologue of the Drosophila shaker family and encoding for Kv1.3 subunits, can cause DEE. METHODS: Genetic analysis of study individuals was performed by routine exome or genome sequencing, usually of parent-offspring trios. Phenotyping was performed via a standard clinical questionnaire. Currents from wild-type and/or mutant Kv1.3 subunits were investigated by whole-cell patch-clamp upon their heterologous expression. RESULTS: Fourteen individuals, each carrying a de novo heterozygous missense variant in KCNA3, were identified. Most (12/14; 86%) had DEE with marked speech delay with or without motor delay, intellectual disability, epilepsy, and autism spectrum disorder. Functional analysis of Kv1.3 channels carrying each variant revealed heterogeneous functional changes, ranging from "pure" loss-of-function (LoF) effects due to faster inactivation kinetics, depolarized voltage-dependence of activation, slower activation kinetics, increased current inactivation, reduced or absent currents with or without dominant-negative effects, to "mixed" loss- and gain-of-function (GoF) effects. Compared to controls, Kv1.3 currents in lymphoblasts from 1 of the proband displayed functional changes similar to those observed upon heterologous expression of channels carrying the same variant. The antidepressant drug fluoxetine inhibited with similar potency the currents from wild-type and 1 of the Kv1.3 GoF variant. INTERPRETATION: We describe a novel association of de novo missense variants in KCNA3 with a human DEE, and provide evidence that fluoxetine might represent a potential targeted treatment for individuals carrying variants with significant GoF effects. ANN NEUROL 2024;95:365-376.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia Generalizada , Epilepsia , Animales , Humanos , Fluoxetina , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/complicaciones , Mutación Missense/genética , Mamíferos , Canal de Potasio Kv1.3/genética
7.
Hum Mol Genet ; 33(4): 355-373, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944084

RESUMEN

GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.


Asunto(s)
Sistema Nervioso Central , Receptores de Glutamato , Humanos , Sistema Nervioso Central/metabolismo , Mutación , Dominios Proteicos , Receptores de Glutamato/metabolismo
8.
Biotechnol Bioeng ; 121(2): 771-783, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37920977

RESUMEN

The semi and fully continuous production of monoclonal antibodies (mAbs) has been gaining traction as a lower cost, and efficient production of mAbs to broaden patient access. To be truly flexible and adaptive to process demands, the industry has lacked sufficient advanced control strategies. The variation of the upstream product concentration typically cannot be handled by the downstream capture step, which is configured for a constant feed concentration and fixed binding capacity. This inflexibility leads to losses of efficiency and product yield. This study shows that these challenges can be overcome by a novel advanced control strategy concept that includes dynamic control throughout a perfusion bioreactor, with cell retention by alternating tangential flow, integrated with simulated moving bed (SMB) multi-column chromatography. The automation workflow and advanced control strategy were implemented through the use of a visual programming development environment. This enabled dynamic flow control across the upstream and downstream process integrated with a dynamic column loading of the SMB. A sensor prototype, based on continuous biolayer interferometry measurements was applied to detect mAb breakthrough within the last column flow-through to manage column switching. This novel approach provided higher specificity and lower background signal compared to commonly used spectroscopy methods, resulting in an optimized resin utilization while simultaneously avoiding product loss. The dynamic loading was found to provide a twofold increase of the mAb concentration in the eluate compared to a conservative approach with a predefined recipe with similar impurity removal. This concept shows that advanced control strategies can lead to significant process efficiency and yield improvement.


Asunto(s)
Anticuerpos Monoclonales , Cromatografía , Humanos , Anticuerpos Monoclonales/química , Reactores Biológicos , Interferometría , Perfusión
9.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37974505

RESUMEN

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Asunto(s)
Aneuploidia , Trastornos de los Cromosomas , Cromosomas Humanos Par 22 , Anomalías del Ojo , Cardiopatías Congénitas , Humanos , Estudios Retrospectivos , Hibridación Fluorescente in Situ , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética
10.
Acta Neuropathol Commun ; 11(1): 179, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946310

RESUMEN

Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Niño , Humanos , Epilepsia/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Activadoras de GTPasa/genética , Genotipo , Malformaciones del Desarrollo Cortical/genética
11.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921875

RESUMEN

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/genética , Transmisión Sináptica/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo
12.
Commun Biol ; 6(1): 952, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37723282

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.


Asunto(s)
Calcio , Parvalbúminas , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Hipocampo , Interneuronas , Parvalbúminas/genética , Convulsiones , Receptores de N-Metil-D-Aspartato/genética
13.
Brain ; 146(12): 5198-5208, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647852

RESUMEN

Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Estudios de Asociación Genética , Mutación Missense , Humanos , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Fenotipo
14.
Neurology ; 101(9): e879-e891, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37407264

RESUMEN

BACKGROUND AND OBJECTIVES: Pathogenic variants in STXBP1 are among the major genetic causes of neurodevelopmental disorders. Despite the increasing number of individuals diagnosed without a history of epilepsy, little is known about the natural history and developmental trajectories in this subgroup and endpoints for future therapeutic studies are limited to seizure control. METHODS: We performed a cross-sectional retrospective study using standardized questionnaires for clinicians and caregivers of individuals with STXBP1-related disorders capturing medical histories, genetic findings, and developmental outcomes. Motor and language function were assessed using Gross Motor Function Classification System (GMFCS) scores and a speech impairment score and were compared within and across clinically defined subgroups. RESULTS: We collected data of 71 individuals with STXBP1-related disorders, including 44 previously unreported individuals. Median age at inclusion was 5.3 years (interquartile range 3.5-9.3) with the oldest individual aged 43.8 years. Epilepsy was absent in 18/71 (25%) of individuals. The range of developmental outcomes was broad, including 2 individuals presenting with close to age-appropriate motor development. Twenty-nine of 61 individuals (48%) were able to walk unassisted, and 24/69 (35%) were able to speak single words. Individuals without epilepsy presented with a similar onset and spectrum of phenotypic features but had lower GMFCS scores (median 3 vs 4, p < 0.01) than individuals with epilepsy. Individuals with epileptic spasms were less likely to walk unassisted than individuals with other seizure types (6% vs 58%, p < 0.01). Individuals with early epilepsy onset had higher speech impairment scores (p = 0.02) than individuals with later epilepsy onset. DISCUSSION: We expand the spectrum of STXBP1-related disorders and provide clinical features and developmental trajectories in individuals with and without a history of epilepsy. Individuals with epilepsy, in particular epileptic spasms, and neonatal or early-onset presented with less favorable motor and language functional outcomes compared with individuals without epilepsy. These findings identify children at risk for severe disease and can serve as comparator for future interventional studies in STXBP1-related disorders.


Asunto(s)
Epilepsia , Espasmos Infantiles , Niño , Preescolar , Humanos , Estudios Transversales , Proteínas Munc18/genética , Mutación , Estudios Retrospectivos , Convulsiones , Espasmo , Espasmos Infantiles/genética , Trastornos del Habla , Adulto
15.
Eng Life Sci ; 23(6): e2200053, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37275212

RESUMEN

Viable cell concentration (VCC) is an essential parameter that is required to support the efficient cultivation of mammalian cells. Although commonly determined using at-line or off-line analytics, in-line capacitance measurements represent a suitable alternative method for the determination of VCC. In addition, these latter efforts are complimentary with the Food and Drug Administration's initiative for process analytical technologies (PATs). However, current applications for online determination of the VCC often rely on single frequency measurements and corresponding linear regression models. It has been reported that this may be insufficient for application at all stages of a mammalian cell culture processes due to changes in multiple cell parameters over time. Alternatively, dielectric spectroscopy, measuring capacitance at multiple frequencies, in combination with multivariate mathematical models, has proven to be more robust. However, this has only been applied for retrospective data analysis. Here, we present the implementation of an O-PLS model for the online processing of multifrequency capacitance signals and the on-the-fly integration of the models' VCC results into a supervisory control and data acquisition (SCADA) system commonly used for cultivation observation and control. This system was evaluated using a Chinese hamster ovary (CHO) cell perfusion process.

16.
Hum Mol Genet ; 32(19): 2857-2871, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37369021

RESUMEN

Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.


Asunto(s)
Enfermedades del Sistema Nervioso , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Mutación Missense/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Modelos Biológicos
17.
Am J Hum Genet ; 110(7): 1110-1122, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37369202

RESUMEN

Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.


Asunto(s)
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/genética , Fenotipo , Alelos , Encéfalo , Frecuencia de los Genes/genética
18.
Brain ; 146(9): 3885-3897, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37006128

RESUMEN

Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsias Mioclónicas/genética , Epilepsia/genética , Fenotipo , Genómica
19.
Ann Neurol ; 94(2): 332-349, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062836

RESUMEN

OBJECTIVE: Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS: Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS: The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION: We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.


Asunto(s)
Discapacidad Intelectual , Neuroblastoma , Humanos , Células HEK293 , Fenotipo , Genotipo , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Canales de potasio activados por Sodio/genética
20.
Bioinformatics ; 39(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104749

RESUMEN

MOTIVATION: Pathogenic copy-number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. RESULTS: Here, we introduce the CNV-ClinViewer, an open-source web application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface and facilitates semi-automated clinical CNV interpretation following the ACMG guidelines by integrating the ClassifCNV tool. In combination with clinical judgment, the application enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators' patient care and for basic scientists' translational genomic research. AVAILABILITY AND IMPLEMENTATION: The web application is freely available at https://cnv-ClinViewer.broadinstitute.org and the open-source code can be found at https://github.com/LalResearchGroup/CNV-clinviewer.


Asunto(s)
Variaciones en el Número de Copia de ADN , Programas Informáticos , Humanos , Genómica , Fenotipo , Genoma Humano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...