Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 136(1): 57-72, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19374719

RESUMEN

In view of the projected increase in the frequency of extreme events during this century, we investigated the impact of a drought extreme on leaf ecophysiological parameters and carbon isotope composition (delta(13)C) of grassland communities with species richness (S) of one, three or nine species. The communities, grown for 3 years at either ambient air temperatures (ambient T(air)) or ambient T(air) + 3 degrees C (elevated T(air)), were additionally subjected to an imposed drought by withholding water for 24 days. During the previous 3 years equal precipitation was applied in both temperature treatments, thus communities at elevated T(air) had experienced more frequent, mild droughts. However, it was unknown whether this resulted in a higher resistance for facing extreme droughts. At similar soil matric potentials stomatal conductance (g(s)) and transpiration (Tr) were higher at elevated than ambient T(air), indicating acclimation to lower soil water content. Despite the stomatal acclimation observed, plants in elevated T(air) showed a lower resistance to the drought extreme as indicated by their lower photosynthetic rate (A(max)), g(s) and Tr during the entire duration of the drought extreme. Lower values for A(max), Tr and g(s) were also recorded in species at S = 3 as compared with species at S = 1 for both temperature treatments, but no further differences with S = 9 suggesting that stress was not alleviated at higher S-levels. The discrimination of (13)C was poorly correlated with measurements of instantaneous leaf water-use efficiency (A(max)/Tr) and, with this time scale and sampling method, it was not possible to detect any potential change in plant water-use efficiency using leaf delta(13)C.


Asunto(s)
Aclimatación/fisiología , Clima , Sequías , Fotosíntesis/fisiología , Poaceae/fisiología , Isótopos de Carbono/análisis , Clorofila/análisis , Fluorescencia , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Suelo/análisis , Temperatura , Agua/fisiología
2.
IEEE Trans Med Imaging ; 28(2): 250-60, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19188112

RESUMEN

Metal implants such as hip prostheses and dental fillings produce streak and star artifacts in the reconstructed computed tomography (CT) images. Due to these artifacts, the CT image may not be diagnostically usable. A new reconstruction procedure is proposed that reduces the streak artifacts and that might improve the diagnostic value of the CT images. The procedure starts with a maximum a posteriori (MAP) reconstruction using an iterative reconstruction algorithm and a multimodal prior. This produces an artifact-free constrained image. This constrained image is the basis for an image-based projection completion procedure. The algorithm was validated on simulations, phantom and patient data, and compared with other metal artifact reduction algorithms.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Metales , Prótesis e Implantes , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Simulación por Computador , Restauración Dental Permanente , Prótesis de Cadera , Humanos , Cadenas de Markov , Fantasmas de Imagen , Reproducibilidad de los Resultados
3.
Phys Med Biol ; 53(16): 4417-29, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18670051

RESUMEN

The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of (18)F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Electrodos Implantados , Electroencefalografía/instrumentación , Metales , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Epilepsia/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
J Nucl Med ; 49(7): 1047-52, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18552154

RESUMEN

UNLABELLED: In patients with oral head and neck cancer, the presence of metallic dental implants produces streak artifacts in the CT images. These artifacts negate the utility of CT for the spatial localization of PET findings and may propagate through the CT-based attenuation correction into the PET images. In this study, we evaluated the efficacy of an algorithm that reduces metallic artifacts in CT images and the impact of this approach on the quantification of PET images. METHODS: Fifty-one patients with and 9 without dental implants underwent a PET/CT study. CT images through the patient's dental implants were reconstructed using both standard CT reconstruction and an algorithm that reduces metallic artifacts. Attenuation correction factors were calculated from both sets of CT images and applied to the PET data. The CT images were evaluated for any reduction of the artifacts. The PET images were assessed for any quantitative change introduced by metallic artifact reduction. RESULTS: For each reconstruction, 2 regions of interest were defined in areas where the standard CT reconstruction overestimated the Hounsfield units (HU), 2 were defined in underestimated areas, and 1 was defined in a region unaffected by the artifacts. The 5 regions of interest were transferred to the other 3 reconstructions. Mean HU or mean Bq/cm(3) were obtained for all regions. In the CT reconstructions, metallic artifact reduction decreased the overestimated HUs by approximately 60% and increased the underestimated HUs by approximately 90%. There was no change in quantification in the PET images between the 2 algorithms (Spearman coefficient of rank correlation, 0.99). Although the distribution of attenuation (HU) changed considerably in the CT images, the distribution of activity did not change in the PET images. CONCLUSION: Our study demonstrated that the algorithm can enhance the structural and spatial content of CT images in the presence of metallic artifacts. The CT artifacts do not propagate through the CT-based attenuation correction into the PET images, confirming the robustness of CT-based attenuation correction in the presence of metallic artifacts. The study also demonstrated that considerable changes in CT images do not change the PET images.


Asunto(s)
Artefactos , Implantes Dentales , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fluorodesoxiglucosa F18 , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos
5.
New Phytol ; 175(3): 512-522, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17635226

RESUMEN

This paper presents the results of 2 yr of CO(2) flux measurements on grassland communities of varying species richness, exposed to either the current or a warmer climate. We grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers. Half of these chambers were exposed to ambient air temperatures, while the other half were warmed by 3 degrees C. Equal amounts of water were added to heated and unheated communities, implying drier soils if warming increased evapotranspiration. Three main CO(2) fluxes (gross photosynthesis, above-ground and below-ground respiration) were measured multiple times per year and reconstructed hourly or half-hourly by relating them to their most important environmental driver. While CO(2) outputs through respiration were largely unchanged under warming, CO(2) inputs through photosynthesis were lowered, especially in summer, when heat and drought stress were higher. Above-ground CO(2) fluxes were significantly increased in multispecies communities, as more complementary resource use stimulated productivity. Finally, effects of warming appeared to be smallest in monocultures. This study shows that in a future warmer climate the CO(2) sink capacity of temperate grasslands could decline, and that such adverse effects are not likely to be mitigated by efforts to maintain or increase species richness.


Asunto(s)
Biodiversidad , Dióxido de Carbono/metabolismo , Ecosistema , Efecto Invernadero , Poaceae/metabolismo , Clima , Estaciones del Año , Suelo , Agua/metabolismo
6.
Physiol Plant ; 131(2): 251-62, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18251896

RESUMEN

In view of the projected climatic changes and the global decrease in plant species diversity, it is critical to understand the effects of elevated air temperature (T(air)) and species richness (S) on physiological processes in plant communities. Therefore, an experiment of artificially assembled grassland ecosystems, with different S (one, three or nine species), growing in sunlit climate-controlled chambers at ambient T(air) and ambient T(air) + 3 degrees C was established. We investigated whether grassland species would be more affected by midday high-temperature stress during summer in a warmer climate scenario. The effect of elevated T(air) was expected to differ with S. This was tested in the second and third experimental years by means of chlorophyll a fluorescence. Because acclimation to elevated T(air) would affect the plant's stress response, the hypothesis of photosynthetic acclimation to elevated T(air) was tested in the third year by gas exchange measurements in the monocultures. Plants in the elevated T(air) chambers suffered more from midday stress on warm summer days than those in ambient chambers. In absence of severe drought, the quantum yield of PSII was not affected by elevated T(air). Our results further indicate that species had not photosynthetically acclimated to a temperature increase of 3 degrees C after 3 years exposure to a warmer climate. Although effects of S and T(air) x S interactions were mostly not significant in our study, we expect that combined effects of T(air) and S would be important in conditions of severe drought events.


Asunto(s)
Clima , Efecto Invernadero , Fotoquímica , Poaceae/metabolismo , Aclimatación , Clorofila/metabolismo , Ecosistema , Ambiente Controlado , Fotosíntesis/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Poaceae/crecimiento & desarrollo , Poaceae/efectos de la radiación , Luz Solar , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...