Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4266, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769298

RESUMEN

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Asunto(s)
Carcinogénesis , Indoles , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Triptófano , Triptófano/metabolismo , Animales , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Indoles/metabolismo , Indoles/farmacología , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Carcinogénesis/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Quinurenina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Masculino
2.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38496656

RESUMEN

ATTR amyloidosis results from the conversion of transthyretin into amyloid fibrils that deposit in tissues causing organ failure and death. This conversion is facilitated by mutations in ATTRv amyloidosis, or aging in ATTRwt amyloidosis. ATTRv amyloidosis exhibits extreme phenotypic variability, whereas ATTRwt amyloidosis presentation is consistent and predictable. Previously, we found an unprecedented structural variability in cardiac amyloid fibrils from polyneuropathic ATTRv-I84S patients. In contrast, cardiac fibrils from five genotypically-different patients with cardiomyopathy or mixed phenotypes are structurally homogeneous. To understand fibril structure's impact on phenotype, it is necessary to study the fibrils from multiple patients sharing genotype and phenotype. Here we show the cryo-electron microscopy structures of fibrils extracted from four cardiomyopathic ATTRwt amyloidosis patients. Our study confirms that they share identical conformations with minimal structural variability, consistent with their homogenous clinical presentation. Our study contributes to the understanding of ATTR amyloidosis biopathology and calls for further studies.

3.
Nat Commun ; 15(1): 2287, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480701

RESUMEN

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Through a genome-wide CRISPR screen, we identify protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout breast cancer cells. Inhibition of PRMT5 blocks the G1-to-S transition in the cell cycle independent of RB, leading to growth arrest in RB1-knockout cells. Proteomics analysis uncovers fused in sarcoma (FUS) as a downstream effector of PRMT5. Inhibition of PRMT5 results in dissociation of FUS from RNA polymerase II, leading to hyperphosphorylation of serine 2 in RNA polymerase II, intron retention, and subsequent downregulation of proteins involved in DNA synthesis. Furthermore, treatment with the PRMT5 inhibitor pemrametostat and a selective ER degrader fulvestrant synergistically inhibits growth of ER+/RB-deficient cell-derived and patient-derived xenografts. These findings highlight dual ER and PRMT5 blockade as a potential therapeutic strategy to overcome resistance to CDK4/6i in ER+/RB-deficient breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , ARN Polimerasa II , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
Nat Commun ; 15(1): 581, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233397

RESUMEN

ATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils. Here we investigate whether there is such an association in ATTRv amyloidosis patients carrying the mutation I84S. Using cryo-electron microscopy, we determined the structures of cardiac fibrils extracted from three ATTR amyloidosis patients carrying the ATTRv-I84S mutation, associated with a consistent clinical phenotype. We found that in each ATTRv-I84S patient, the cardiac fibrils exhibited different local conformations, and these variations can co-exist within the same fibril. Our finding suggests that one amyloid disease may associate with multiple fibril structures in systemic amyloidoses, calling for further studies.


Asunto(s)
Neuropatías Amiloides Familiares , Encefalopatías , Humanos , Amiloide/química , Neuropatías Amiloides Familiares/genética , Microscopía por Crioelectrón , Prealbúmina/genética , Prealbúmina/química , Corazón
5.
Oncogene ; 43(4): 265-280, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030789

RESUMEN

Prostate cancer (PCa) is primarily driven by aberrant Androgen Receptor (AR) signaling. Although there has been substantial advancement in antiandrogen therapies, resistance to these treatments remains a significant obstacle, often marked by continuous or enhanced AR signaling in resistant tumors. While the dysregulation of the ubiquitination-based protein degradation process is instrumental in the accumulation of oncogenic proteins, including AR, the molecular mechanism of ubiquitination-driven AR degradation remains largely undefined. We identified UBE2J1 as the critical E2 ubiquitin-conjugating enzyme responsible for guiding AR ubiquitination and eventual degradation. The absence of UBE2J1, found in 5-15% of PCa patients, results in disrupted AR ubiquitination and degradation. This disruption leads to an accumulation of AR proteins, promoting resistance to antiandrogen treatments. By employing a ubiquitination-based AR degrader to adeptly restore AR ubiquitination, we reestablished AR degradation and inhibited the proliferation of antiandrogen-resistant PCa tumors. These findings underscore the fundamental role of UBE2J1 in AR degradation and illuminate an uncharted mechanism through which PCa maintains heightened AR protein levels, fostering resistance to antiandrogen therapies.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Proteolisis , Receptores Androgénicos , Enzimas Ubiquitina-Conjugadoras , Humanos , Masculino , Antagonistas de Andrógenos/farmacología , Andrógenos , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
Endocrinology ; 165(2)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38123514

RESUMEN

Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFß. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Músculo Liso Vascular , Proteínas Wnt , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/genética
7.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693404

RESUMEN

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu can happen within hours. A cellular machinery might regulate this process, but potential players are unknown. Methods: We used proximity labeling to identify factors that control seed amplification. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity upon seeded intracellular tau aggregation. We identified valosin containing protein (VCP/p97) 5h after seeding. Mutations in VCP underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We utilized tau biosensors, a cellular model for tau aggregation, to study the effects of VCP on tau seeding. Results: VCP knockdown reduced tau seeding. However, distinct chemical inhibitors of VCP and the proteasome had opposing effects on aggregation, but only when given <8h of seed exposure. ML-240 increased seeding efficiency ~40x, whereas NMS-873 decreased seeding efficiency by 50%, and MG132 increased seeding ~10x. We screened VCP co-factors in HEK293 biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. Reduction of FAF2 and UBXN6 increased tau seeding. Conclusions: VCP uses distinct cofactors to determine seed replication efficiency, consistent with a dedicated cytoplasmic processing complex that directs seeds towards dissolution vs. amplification.

8.
Cell Host Microbe ; 31(10): 1639-1654.e10, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776864

RESUMEN

During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.


Asunto(s)
Infecciones por Salmonella , Sideróforos , Humanos , Lipocalina 2/metabolismo , Sideróforos/metabolismo , Enterobactina/metabolismo , Bacterias/metabolismo , Hierro/metabolismo
9.
J Control Release ; 361: 361-372, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536547

RESUMEN

Messenger RNA (mRNA) can treat genetic disease using protein replacement or genome editing approaches but requires a suitable carrier to circumnavigate biological barriers and access the desired cell type within the target organ. Lipid nanoparticles (LNPs) are widely used in the clinic for mRNA delivery yet are limited in their applications due to significant hepatic accumulation because of the formation of a protein corona enriched in apolipoprotein E (ApoE). Our lab developed selective organ targeting (SORT) LNPs that incorporate a supplementary component, termed a SORT molecule, for tissue-specific mRNA delivery to the liver, spleen, and lungs of mice. Mechanistic work revealed that the biophysical class of SORT molecule added to the LNP forms a distinct protein corona that helps determine where in the body mRNA is delivered. To better understand which plasma proteins could drive tissue-specific mRNA delivery, we characterized a panel of quaternary ammonium lipids as SORT molecules to assess how chemical structure affects the organ-targeting outcomes and protein corona of lung-targeting SORT LNPs. We discovered that variations in the chemical structure of both the lipid alkyl tail and headgroup impact the potency and specificity of mRNA delivery to the lungs. Furthermore, changes to the chemical structure alter the quantities and identities of protein corona constituents in a manner that correlates with organ-targeting outcomes, with certain proteins appearing to promote lung targeting whereas others reduce delivery to off-target organs. These findings unveil a nuanced relationship between LNP chemistry and endogenous targeting, where the ensemble of proteins associated with an LNP can play various roles in determining the tissue-specificity of mRNA delivery, providing further design criteria for optimization of clinically-relevant nanoparticles for extrahepatic delivery of genetic payloads.


Asunto(s)
Compuestos de Amonio , Nanopartículas , Corona de Proteínas , Ratones , Animales , Lípidos/química , ARN Mensajero/metabolismo , Liposomas , Nanopartículas/química , ARN Interferente Pequeño/química
10.
Nat Commun ; 14(1): 4989, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591837

RESUMEN

The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis.


Asunto(s)
Receptor alfa de Estrógeno , Insulina , Animales , Femenino , Masculino , Ratones , Células Endoteliales , Glucosa , Músculo Esquelético , Receptores de Estrógenos
11.
Res Sq ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37502925

RESUMEN

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer acquired resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Using a genome-wide CRISPR screen, we identified protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout (RBKO) breast cancer cells. PRMT5 inhibition blocked cell cycle G1-to-S transition independent of RB, thus arresting growth of RBKO cells. Proteomics analysis uncovered fused in sarcoma (FUS) as a downstream effector of PRMT5. Pharmacological inhibition of PRMT5 resulted in dissociation of FUS from RNA polymerase II (Pol II), Ser2 Pol II hyperphosphorylation, and intron retention in genes that promote DNA synthesis. Treatment with the PRMT5i inhibitor pemrametostat and fulvestrant synergistically inhibited growth of ER+/RB-deficient patient-derived xenografts, suggesting dual ER and PRMT5 blockade as a novel therapeutic strategy to treat ER+/RB-deficient breast cancer.

12.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425782

RESUMEN

During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron in the inflamed gut by utilizing siderophores produced by other bacteria including Salmonella, via a secreted siderophore-binding lipoprotein termed XusB. Notably, XusB-bound siderophores are less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella , allowing the pathogen to evade nutritional immunity. As the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the interactions between pathogen and host nutritional immunity.

13.
Nat Cancer ; 4(6): 893-907, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248394

RESUMEN

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Dinaminas/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
14.
Biomed Pharmacother ; 162: 114614, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068330

RESUMEN

The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, where ecto-5'-nucleotidase (NT5E) was downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates with SARS-CoV-2 antiviral activity. While mebendazole does appear to target Mpro, atovaquone may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Dihidroorotato Deshidrogenasa , Reposicionamiento de Medicamentos , Dronedarona/farmacología , Pandemias , Atovacuona/farmacología , Mebendazol/farmacología , Purinas/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
15.
Infect Immun ; 91(4): e0003623, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36995231

RESUMEN

Pseudomonas aeruginosa keratitis occurs following trauma, in immunocompromised patients, and in otherwise healthy contact lens wearers. Characterized by a light-blocking infiltrate, P. aeruginosa keratitis is the most serious complication associated with contact lens wear and, in severe cases, can lead to vision loss. Bacterial extracellular vesicles (B EVs) are membrane-enclosed nanometer-scale particles secreted from bacteria and are packed with bioactive molecules. B EVs have been shown to mediate biological functions that regulate host pathogenic responses. In the present study, we isolated P. aeruginosa-derived EVs using size exclusion chromatography and compared the proteomic compositions and functional activities of P. aeruginosa-derived EVs and P. aeruginosa-derived free protein (FP) on corneal epithelial cells and neutrophils. Importantly, P. aeruginosa-derived EVs and FP exhibited unique protein profiles, with EVs being enriched in P. aeruginosa virulence proteins. P. aeruginosa-derived EVs promoted corneal epithelial cell secretion of interleukin-6 (IL-6) and IL-8, whereas these cytokines were not upregulated following treatment with FP. In contrast, FP had a negative effect on the host inflammatory response and impaired neutrophil killing. Both P. aeruginosa-derived EVs and FP promoted intracellular bacterial survival in corneal epithelial cells. Collectively, these data suggest that P. aeruginosa-derived EVs and FP may play a critical role in the pathogenesis of corneal infection by interfering with host innate immune defense mechanisms.


Asunto(s)
Lentes de Contacto , Vesículas Extracelulares , Queratitis , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Proteómica , Queratitis/microbiología , Lentes de Contacto/microbiología , Inflamación
16.
Nat Commun ; 13(1): 6781, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351927

RESUMEN

Polycomb repressive complex 2 (PRC2) plays a key role in maintaining cell identity during differentiation. Methyltransferase activity of PRC2 on histone H3 lysine 27 is regulated by diverse cellular mechanisms, including posttranslational modification. Here, we report a unique phosphorylation-dependent mechanism stimulating PRC2 enzymatic activity. Residue S583 of SUZ12 is phosphorylated by casein kinase 2 (CK2) in cells. A crystal structure captures phosphorylation in action: the flexible phosphorylation-dependent stimulation loop harboring S583 becomes engaged with the catalytic SET domain through a phosphoserine-centered interaction network, stabilizing the enzyme active site and in particular S-adenosyl-methionine (SAM)-binding pocket. CK2-mediated S583 phosphorylation promotes catalysis by enhancing PRC2 binding to SAM and nucleosomal substrates and facilitates reporter gene repression. Loss of S583 phosphorylation impedes PRC2 recruitment and H3K27me3 deposition in pluripotent mESCs and compromises the ability of PRC2 to maintain differentiated cell identity.


Asunto(s)
Quinasa de la Caseína II , Complejo Represivo Polycomb 2 , Complejo Represivo Polycomb 2/metabolismo , Quinasa de la Caseína II/metabolismo , Dominio Catalítico , Histonas/metabolismo , Fosforilación
17.
Elife ; 112022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154948

RESUMEN

Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue-specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.


Mitochondria are specialised structures inside cells that help to convert nutrients into energy. They take electrons from nutrients and use them to power biochemical reactions that supply chemical fuel. Previous studies of cells grown in the laboratory have found that electrons enter this process via a large assembly of proteins in mitochondria called complex I. Understanding the mechanism of energy production is important, as issues with mitochondria can lead to a variety of metabolic diseases. However, it is still unclear how complex I acts in living animals. Lesner et al. addressed this knowledge gap by genetically removing a key protein from complex I in the liver of mice. Surprisingly, the animals did not develop any detectable symptoms and maintained healthy liver function. Mice did not seem to compensate by making energy in a different way, suggesting that complex I is not normally used by the mouse liver for this process. This research suggests that biologists should reconsider the mechanism that mitochondria use to power cells in animals. While the role of Complex I in electron transfer is well established in laboratory-grown cells and some organs, like the brain, it cannot be assumed this applies to the whole body. Understanding energy production in specific organs could help researchers to develop nutrient-based therapies for metabolic diseases.


Asunto(s)
Complejo I de Transporte de Electrón , Proteómica , Animales , Ratones , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Hígado/metabolismo , Oxígeno/metabolismo
18.
Mol Cell ; 82(17): 3299-3311.e8, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868311

RESUMEN

NAD+ kinases (NADKs) are metabolite kinases that phosphorylate NAD+ molecules to make NADP+, a limiting substrate for the generation of reducing power NADPH. NADK2 sustains mitochondrial NADPH production that enables proline biosynthesis and antioxidant defense. However, its molecular architecture and mechanistic regulation remain undescribed. Here, we report the crystal structure of human NADK2, revealing a substrate-driven mode of activation. We find that NADK2 presents an unexpected dimeric organization instead of the typical tetrameric assemblage observed for other NADKs. A specific extended segment (aa 325-365) is crucial for NADK2 dimerization and activity. Moreover, we characterize numerous acetylation events, including those on Lys76 and Lys304, which reside near the active site and inhibit NADK2 activity without disrupting dimerization, thereby reducing mitochondrial NADP(H) production, proline synthesis, and cell growth. These findings reveal important molecular insight into the structure and regulation of a vital enzyme in mitochondrial NADPH and proline metabolism.


Asunto(s)
Lisina , NAD , Acetilación , Dominio Catalítico , Humanos , Lisina/metabolismo , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Prolina/metabolismo
19.
Cell Rep ; 36(5): 109491, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348154

RESUMEN

The exocyst is an evolutionarily conserved protein complex that regulates vesicular trafficking and scaffolds signal transduction. Key upstream components of the exocyst include monomeric RAL GTPases, which help mount cell-autonomous responses to trophic and immunogenic signals. Here, we present a quantitative proteomics-based characterization of dynamic and signal-dependent exocyst protein interactomes. Under viral infection, an Exo84 exocyst subcomplex assembles the immune kinase Protein Kinase R (PKR) together with the Hippo kinase Macrophage Stimulating 1 (MST1). PKR phosphorylates MST1 to activate Hippo signaling and inactivate Yes Associated Protein 1 (YAP1). By contrast, a Sec5 exocyst subcomplex recruits another immune kinase, TANK binding kinase 1 (TBK1), which interacted with and activated mammalian target of rapamycin (mTOR). RALB was necessary and sufficient for induction of Hippo and mTOR signaling through parallel exocyst subcomplex engagement, supporting the cellular response to virus infection and oncogenic signaling. This study highlights RALB-exocyst signaling subcomplexes as mechanisms for the integrated engagement of Hippo and mTOR signaling in cells challenged by viral pathogens or oncogenic signaling.


Asunto(s)
Vía de Señalización Hippo , Neoplasias/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Virus/aislamiento & purificación , Animales , Línea Celular Tumoral , Supervivencia Celular , Citosol/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Virosis/metabolismo , Proteínas Señalizadoras YAP/metabolismo , eIF-2 Quinasa/metabolismo , Proteínas de Unión al GTP ral/metabolismo
20.
Mol Neurodegener ; 16(1): 25, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853653

RESUMEN

BACKGROUND: Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS: AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS: We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS: We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.


Asunto(s)
Empalme Alternativo , Factor Inductor de la Apoptosis/fisiología , Mitocondrias/metabolismo , Degeneración Nerviosa/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Factor Inductor de la Apoptosis/deficiencia , Factor Inductor de la Apoptosis/genética , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Exones/genética , Femenino , Lóbulo Frontal/química , Mutación con Ganancia de Función , Edición Génica , Técnicas de Sustitución del Gen , Humanos , Lactante , Recién Nacido , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Persona de Mediana Edad , Neuronas/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...