Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503182

RESUMEN

Genetically encoded fluorescent calcium indicators have revolutionized neuroscience and other biological fields by allowing cellular-resolution recording of physiology during behavior. However, we currently lack bright, genetically targetable indicators in the near infrared that can be used in animals. Here, we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains that can be genetically targeted to specific cell populations. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several dye-ligands that efficiently label the central nervous system in animals. When bound to a near-infrared dye-ligand, WHaloCaMP1a is more than twice as bright as jGCaMP8s, and shows a 7× increase in fluorescence intensity and a 2.1 ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a with near-infrared fluorescence emission to image Ca2+ responses in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae, and to quantitate calcium concentration using fluorescence lifetime imaging microscopy (FLIM).

2.
Nat Biotechnol ; 41(1): 44-49, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36065022

RESUMEN

We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Animales , Ratones , Linaje de la Célula , Microscopía
3.
Cell Rep ; 35(12): 109284, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161775

RESUMEN

Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 µM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.


Asunto(s)
Ingeniería Genética , Glucosa/metabolismo , Modelos Biológicos , Animales , Transporte Biológico , Sistema Nervioso Central/metabolismo , Drosophila/metabolismo , Células HEK293 , Humanos , Imagenología Tridimensional , Larva/metabolismo , Músculos/metabolismo , Neuroglía/metabolismo , Proteínas/metabolismo , Ratas Sprague-Dawley , Pez Cebra/metabolismo
4.
Curr Opin Cell Biol ; 66: 34-42, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32470820

RESUMEN

At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM). How then is the average biologist, without an advanced degree in physics, optics, or computer science supposed to make heads or tails of which method is best suited for their needs? Let us also not forget the plight of the optical physicist, who at best might need help with obtaining healthy samples and keeping them that way, or at worst may not realize the impact their newest technique could have for biologists. This review will not attempt to solve all these problems, but instead highlight some of the most recent, successful mergers between biology and advanced imaging technologies, as well as hopefully provide some guidance for anyone interested in journeying into the world of live-cell imaging.


Asunto(s)
Imagenología Tridimensional , Microscopía/instrumentación , Microscopía/métodos , Animales , Supervivencia Celular , Fluorescencia , Humanos , Coloración y Etiquetado
5.
Curr Biol ; 29(7): 1193-1198.e5, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30880009

RESUMEN

The thirteen nuclear cleavages that give rise to the Drosophila blastoderm are some of the fastest known cell cycles [1]. Surprisingly, the fertilized egg is provided with at most one-third of the dNTPs needed to complete the thirteen rounds of DNA replication [2]. The rest must be synthesized by the embryo, concurrent with cleavage divisions. What is the reason for the limited supply of DNA building blocks? We propose that frugal control of dNTP synthesis contributes to the well-characterized deceleration of the cleavage cycles and is needed for robust accumulation of zygotic gene products. In support of this model, we demonstrate that when the levels of dNTPs are abnormally high, nuclear cleavages fail to sufficiently decelerate, the levels of zygotic transcription are dramatically reduced, and the embryo catastrophically fails early in gastrulation. Our work reveals a direct connection between metabolism, the cell cycle, and zygotic transcription.


Asunto(s)
Ciclo Celular , Drosophila/embriología , Cigoto/citología , Animales , Drosophila/citología , Drosophila/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Cigoto/metabolismo
6.
Nat Protoc ; 13(11): 2462-2500, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30367170

RESUMEN

We describe the implementation and use of an adaptive imaging framework for optimizing spatial resolution and signal strength in a light-sheet microscope. The framework, termed AutoPilot, comprises hardware and software modules for automatically measuring and compensating for mismatches between light-sheet and detection focal planes in living specimens. Our protocol enables researchers to introduce adaptive imaging capabilities in an existing light-sheet microscope or use our SiMView microscope blueprint to set up a new adaptive multiview light-sheet microscope. The protocol describes (i) the mechano-optical implementation of the adaptive imaging hardware, including technical drawings for all custom microscope components; (ii) the algorithms and software library for automated adaptive imaging, including the pseudocode and annotated source code for all software modules; and (iii) the execution of adaptive imaging experiments, as well as the configuration and practical use of the AutoPilot framework. Setup of the adaptive imaging hardware and software takes 1-2 weeks each. Previous experience with light-sheet microscopy and some familiarity with software engineering and building of optical instruments are recommended. Successful implementation of the protocol recovers near diffraction-limited performance in many parts of typical multicellular organisms studied with light-sheet microscopy, such as fruit fly and zebrafish embryos, for which resolution and signal strength are improved two- to fivefold.


Asunto(s)
Algoritmos , Embrión no Mamífero/ultraestructura , Microscopía Fluorescente/métodos , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Diseño de Equipo/instrumentación , Guías como Asunto , Microscopía Fluorescente/instrumentación , Programas Informáticos , Pez Cebra/anatomía & histología
7.
Nat Methods ; 14(10): 987-994, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28869757

RESUMEN

Pushing the frontier of fluorescence microscopy requires the design of enhanced fluorophores with finely tuned properties. We recently discovered that incorporation of four-membered azetidine rings into classic fluorophore structures elicits substantial increases in brightness and photostability, resulting in the Janelia Fluor (JF) series of dyes. We refined and extended this strategy, finding that incorporation of 3-substituted azetidine groups allows rational tuning of the spectral and chemical properties of rhodamine dyes with unprecedented precision. This strategy allowed us to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. Our results demonstrate the versatility of these new dyes in cells, tissues and animals.


Asunto(s)
Colorantes/química , Procesamiento de Imagen Asistido por Computador/métodos , Coloración y Etiquetado/métodos , Animales , Encéfalo/anatomía & histología , Línea Celular , Drosophila , Larva/citología , Ratones , Microscopía Fluorescente , Procesos Fotoquímicos
8.
Nat Biotechnol ; 34(12): 1267-1278, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798562

RESUMEN

Optimal image quality in light-sheet microscopy requires a perfect overlap between the illuminating light sheet and the focal plane of the detection objective. However, mismatches between the light-sheet and detection planes are common owing to the spatiotemporally varying optical properties of living specimens. Here we present the AutoPilot framework, an automated method for spatiotemporally adaptive imaging that integrates (i) a multi-view light-sheet microscope capable of digitally translating and rotating light-sheet and detection planes in three dimensions and (ii) a computational method that continuously optimizes spatial resolution across the specimen volume in real time. We demonstrate long-term adaptive imaging of entire developing zebrafish (Danio rerio) and Drosophila melanogaster embryos and perform adaptive whole-brain functional imaging in larval zebrafish. Our method improves spatial resolution and signal strength two to five-fold, recovers cellular and sub-cellular structures in many regions that are not resolved by non-adaptive imaging, adapts to spatiotemporal dynamics of genetically encoded fluorescent markers and robustly optimizes imaging performance during large-scale morphogenetic changes in living organisms.


Asunto(s)
Algoritmos , Embrión no Mamífero/citología , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Animales , Drosophila , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Rayos Láser , Lentes , Iluminación/instrumentación , Iluminación/métodos , Estudios Longitudinales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Pez Cebra
9.
Dev Cell ; 36(2): 225-40, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26812020

RESUMEN

We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS.


Asunto(s)
Forma de la Célula/fisiología , Desarrollo Embrionario/fisiología , Algoritmos , Animales , Rastreo Celular/métodos , Drosophila , Imagenología Tridimensional , Ratones , Microscopía Fluorescente/métodos , Programas Informáticos , Pez Cebra
10.
Nat Methods ; 12(12): 1171-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26501515

RESUMEN

Imaging fast cellular dynamics across large specimens requires high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To meet these requirements, we developed isotropic multiview (IsoView) light-sheet microscopy, which rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. Combining these four views by means of high-throughput multiview deconvolution yields images with high resolution in all three dimensions. We demonstrate whole-animal functional imaging of Drosophila larvae at a spatial resolution of 1.1-2.5 µm and temporal resolution of 2 Hz for several hours. We also present spatially isotropic whole-brain functional imaging in Danio rerio larvae and spatially isotropic multicolor imaging of fast cellular dynamics across gastrulating Drosophila embryos. Compared with conventional light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.


Asunto(s)
Encéfalo/ultraestructura , Embrión no Mamífero/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Imagen de Cuerpo Entero/métodos , Animales , Encéfalo/embriología , Drosophila/embriología , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/instrumentación , Larva , Microscopía Fluorescente/instrumentación , Imagen de Cuerpo Entero/instrumentación , Pez Cebra/embriología
11.
Nat Protoc ; 10(11): 1679-96, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26426501

RESUMEN

Light-sheet microscopy is a powerful method for imaging the development and function of complex biological systems at high spatiotemporal resolution and over long time scales. Such experiments typically generate terabytes of multidimensional image data, and thus they demand efficient computational solutions for data management, processing and analysis. We present protocols and software to tackle these steps, focusing on the imaging-based study of animal development. Our protocols facilitate (i) high-speed lossless data compression and content-based multiview image fusion optimized for multicore CPU architectures, reducing image data size 30-500-fold; (ii) automated large-scale cell tracking and segmentation; and (iii) visualization, editing and annotation of multiterabyte image data and cell-lineage reconstructions with tens of millions of data points. These software modules are open source. They provide high data throughput using a single computer workstation and are readily applicable to a wide spectrum of biological model systems.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Imagen Óptica/métodos , Algoritmos , Animales , Desarrollo Embrionario , Programas Informáticos , Análisis Espacio-Temporal
12.
Nat Commun ; 6: 7924, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26263051

RESUMEN

Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.


Asunto(s)
Sistema Nervioso Central/anatomía & histología , Drosophila melanogaster/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Animales , Sistema Nervioso Central/fisiología , Larva/anatomía & histología , Actividad Motora/fisiología
13.
Mol Reprod Dev ; 82(7-8): 605-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-23996352

RESUMEN

In vivo imaging applications typically require carefully balancing conflicting parameters. Often it is necessary to achieve high imaging speed, low photo-bleaching, and photo-toxicity, good three-dimensional resolution, high signal-to-noise ratio, and excellent physical coverage at the same time. Light-sheet microscopy provides good performance in all of these categories, and is thus emerging as a particularly powerful live imaging method for the life sciences. We see an outstanding potential for applying light-sheet microscopy to the study of development and function of the early nervous system in vertebrates and higher invertebrates. Here, we review state-of-the-art approaches to live imaging of early development, and show how the unique capabilities of light-sheet microscopy can further advance our understanding of the development and function of the nervous system. We discuss key considerations in the design of light-sheet microscopy experiments, including sample preparation and fluorescent marker strategies, and provide an outlook for future directions in the field.


Asunto(s)
Microscopía/métodos , Sistema Nervioso/citología , Sistema Nervioso/embriología , Imagen Óptica/métodos , Animales , Humanos , Microscopía/instrumentación , Imagen Óptica/instrumentación
14.
Methods Mol Biol ; 1189: 79-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25245688

RESUMEN

The fruit fly is an excellent model system for investigating the sequence of epithelial tissue invaginations constituting the process of gastrulation. By combining recent advancements in light sheet fluorescence microscopy (LSFM) and image processing, the three-dimensional fly embryo morphology and relevant gene expression patterns can be accurately recorded throughout the entire process of embryogenesis. LSFM provides exceptionally high imaging speed, high signal-to-noise ratio, low level of photoinduced damage, and good optical penetration depth. This powerful combination of capabilities makes LSFM particularly suitable for live imaging of the fly embryo.The resulting high-information-content image data are subsequently processed to obtain the outlines of cells and cell nuclei, as well as the geometry of the whole embryo tissue by image segmentation. Furthermore, morphodynamics information is extracted by computationally tracking objects in the image. Towards that goal we describe the successful implementation of a fast fitting strategy of Gaussian mixture models.The data obtained by image processing is well-suited for hypothesis testing of the detailed biomechanics of the gastrulating embryo. Typically this involves constructing computational mechanics models that consist of an objective function providing an estimate of strain energy for a given morphological configuration of the tissue, and a numerical minimization mechanism of this energy, achieved by varying morphological parameters.In this chapter, we provide an overview of in vivo imaging of fruit fly embryos using LSFM, computational tools suitable for processing the resulting images, and examples of computational biomechanical simulations of fly embryo gastrulation.


Asunto(s)
Drosophila melanogaster/embriología , Desarrollo Embrionario , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Animales , Forma de la Célula , Embrión no Mamífero/citología , Modelos Biológicos
15.
Elife ; 3: e01699, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24755286

RESUMEN

Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001.


Asunto(s)
Axones/fisiología , Plasticidad Neuronal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Animales , Drosophila , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Imagen Óptica , Receptores de Péptidos de Invertebrados/metabolismo
16.
J Neurosci ; 26(2): 479-89, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16407545

RESUMEN

Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit.


Asunto(s)
Conducta Animal/fisiología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Neuronas/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Encéfalo/citología , Encéfalo/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Potenciales de la Membrana , Datos de Secuencia Molecular , Actividad Motora/fisiología , Neuropéptidos/fisiología , Oocitos , Mutación Puntual , Canales de Potasio/genética , Canales de Potasio/fisiología , Proteínas Recombinantes de Fusión/fisiología , Método Simple Ciego , Canales de Sodio/genética , Canales de Sodio/fisiología , Xenopus laevis
17.
J Neurosci ; 26(2): 573-84, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16407556

RESUMEN

A subset of Drosophila neurons that expresses crustacean cardioactive peptide (CCAP) has been shown previously to make the hormone bursicon, which is required for cuticle tanning and wing expansion after eclosion. Here we present evidence that CCAP-expressing neurons (NCCAP) consist of two functionally distinct groups, one of which releases bursicon into the hemolymph and the other of which regulates its release. The first group, which we call NCCAP-c929, includes 14 bursicon-expressing neurons of the abdominal ganglion that lie within the expression pattern of the enhancer-trap line c929-Gal4. We show that suppression of activity within this group blocks bursicon release into the hemolymph together with tanning and wing expansion. The second group, which we call NCCAP-R, consists of NCCAP neurons outside the c929-Gal4 pattern. Because suppression of synaptic transmission and protein kinase A (PKA) activity throughout NCCAP, but not in NCCAP-c929, also blocks tanning and wing expansion, we conclude that neurotransmission and PKA are required in NCCAP-R to regulate bursicon secretion from NCCAP-c929. Enhancement of electrical activity in NCCAP-R by expression of the bacterial sodium channel NaChBac also blocks tanning and wing expansion and leads to depletion of bursicon from central processes. NaChBac expression in NCCAP-c929 is without effect, suggesting that the abdominal bursicon-secreting neurons are likely to be silent until stimulated to release the hormone. Our results suggest that NCCAP form an interacting neuronal network responsible for the regulation and release of bursicon and suggest a model in which PKA-mediated stimulation of inputs to normally quiescent bursicon-expressing neurons activates release of the hormone.


Asunto(s)
Drosophila melanogaster/fisiología , Hormonas de Invertebrados/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Neuropéptidos/análisis , Alas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Electrorretinografía , Ganglios de Invertebrados/citología , Marcación de Gen , Neuronas/metabolismo , Fenotipo , Pigmentación , Proteínas Recombinantes de Fusión/fisiología , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/fisiología , Canales de Sodio/fisiología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...