Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(24): 26484-26494, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911797

RESUMEN

Membrane permeability is a natural defense barrier that contributes to increased bacterial drug resistance, particularly for Gram-negative pathogens. As such, accurate delivery of the antibacterial agent to the target has become a growing research area in the infectious diseases field as a means of improving drug efficacy. Although the efficient transport of siderophore-antibiotic conjugates into the cytosol still remains challenging, great success has been achieved in the delivery of ß-lactam antibiotics into the periplasmic space via bacterial iron uptake pathways. Cefiderocol, the first siderophore-cephalosporin conjugate approved by the US Food and Drug Administration, is a good example. These conjugation strategies have also been applied to the precise delivery of ß-lactamase inhibitors, such as penicillin-based sulfone 1, to restore ß-lactam antibiotic efficacy in multidrug-resistant bacteria. Herein, we have explored the impact on the bacterial activity of 1 by modifying its iron chelator moiety. A set of derivatives functionalized with diverse iron chelator groups and linkages to the scaffold (compounds 2-8) were synthesized and assayed in vitro. The results on the ability of derivatives 2-8 to recover ß-lactam antibiotic efficacy in difficult-to-treat pathogens that produce various ß-lactamase enzymes, along with kinetic studies with the isolated enzymes, allowed us to identify compound 2, a novel ß-lactamase inhibitor with an expanded spectrum of activity. Molecular dynamics simulation studies provided us with further information regarding the molecular basis of the relative inhibitory properties of the most relevant compound described herein.

2.
Front Pharmacol ; 15: 1387057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818381

RESUMEN

The photobiological damage that certain drugs or their metabolites can photosensitize in proteins is generally associated with the nature of the excited species that are generated upon interaction with UVA light. In this regard, the photoinduced damage of the anticancer drug gefitinib (GFT) and its two main photoactive metabolites GFT-M1 and GFT-M2 in cellular milieu was recently investigated. With this background, the photophysical properties of both the drug and its metabolites have now been studied in the presence of the two main transport proteins of human plasma, i.e., serum albumin (HSA) and α1-acid glycoprotein (HAG) upon UVA light excitation. In general, the observed photobehavior was strongly affected by the confined environment provided by the protein. Thus, GFT-M1 (which exhibits the highest phototoxicity) showed the highest fluorescence yield arising from long-lived HSA-bound phenolate-like excited species. Conversely, locally excited (LE) states were formed within HAG, resulting in lower fluorescence yields. The reserve was true for GFT-M2, which despite being also a phenol, led mainly to formation of LE states within HSA, and phenolate-like species (with a minor contribution of LE) inside HAG. Finally, the parent drug GFT, which is known to form LE states within HSA, exhibited a parallel behavior in the two proteins. In addition, determination of the association constants by both absorption and emission spectroscopy revealed that the two metabolites bind stronger to HSA than the parent drug, whereas smaller differences were observed for HAG. This was further confirmed by studying the competing interactions between GFT or its metabolites with the two proteins using fluorescence measurements. These above experimental findings were satisfactorily correlated with the results obtained by means of molecular dynamics (MD) simulations, which revealed the high affinity binding sites, the strength of interactions and the involved amino acid residues. In general, the differences observed in the photobehavior of the drug and its two photoactive metabolites in protein media are consistent with their relative photosensitizing potentials.

3.
Int J Antimicrob Agents ; 62(4): 106935, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541530

RESUMEN

OBJECTIVES: In order to inform and anticipate potential strategies aimed at combating KPC-producing Klebsiella pneumoniae infections, we analysed imipenem/relebactam and ceftazidime/avibactam single-step mutant frequencies, resistance development trajectories, differentially selected resistance mechanisms and their associated fitness cost using four representative high-risk K. pneumoniae clones. METHODS: Mutant frequencies and mutant preventive concentrations were determined using agar plates containing incremental concentrations of ß-lactam/ß-lactamase inhibitor. Resistance dynamics were determined through incubation for 7 days in 10 mL MH tubes containing incremental concentrations of each antibiotic combination up to their 64 × baseline MIC. Two colonies per strain from each experiment were characterized by antimicrobial susceptibility testing, whole genome sequencing and competitive growth assays (to determine in vitro fitness). KPC variants associated with imipenem/relebactam resistance were characterized by cloning and biochemical experiments, atomic models and molecular dynamics simulation studies. RESULTS: Imipenem/relebactam prevented the emergence of single-step resistance mutants at lower concentrations than ceftazidime/avibactam. In three of the four strains evaluated, imipenem/relebactam resistance development emerged more rapidly, and in the ST512/KPC-3 clone reached higher levels compared to baseline MICs than for ceftazidime/avibactam. Lineages evolved in the presence of ceftazidime/avibactam showed KPC substitutions associated with high-level ceftazidime/avibactam resistance, increased imipenem/relebactam susceptibility and low fitness costs. Lineages that evolved in the presence of imipenem/relebactam showed OmpK36 disruption, KPC modifications (S106L, N132S, L167R) and strain-specific substitutions associated with imipenem/relebactam resistance and high fitness costs. Imipenem/relebactam-selected KPC derivatives demonstrated enhanced relebactam resistance through important changes affecting relebactam recognition and positioning. CONCLUSIONS: Our findings anticipate potential resistance mechanisms affecting imipenem/relebactam during treatment of KPC-producing K. pneumoniae infections.

4.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195077

RESUMEN

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Asunto(s)
Antiinfecciosos , Enterobacteriaceae Resistentes a los Carbapenémicos , Enterobacter cloacae , Carbapenémicos/farmacología , Sideróforos/farmacología , Cefalosporinas/farmacología , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Cefiderocol
5.
Front Mol Biosci ; 10: 1111598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36762206

RESUMEN

Irreversible inhibition of the enzyme type I dehydroquinase (DHQ1), a promising target for anti-virulence drug development, has been explored by enhancing the electrophilicity of specific positions of the ligand towards covalent lysine modification. For ligand design, we made use of the advantages offered by the intrinsic acid-base properties of the amino substituents introduced in the quinate scaffold, namely compounds 6-7 (R configuration at C3), to generate a potential leaving group, as well as the recognition pattern of the enzyme. The reactivity of the C2-C3 bond (Re face) in the scaffold was also explored using compound 8. The results of the present study show that replacement of the C3 hydroxy group of (-)-quinic acid by a hydroxyamino substituent (compound 6) provides a time-dependent irreversible inhibitor, while compound 7, in which the latter functionality was substituted by an amino group, and the introduction of an oxirane ring at C2-C3 bond, compound 8, do not allow covalent modification of the enzyme. These outcomes were supported by resolution of the crystal structures of DHQ1 from Staphylococcus aureus (Sa-DHQ1) and Salmonella typhi (St-DHQ1) chemically modified by 6 at a resolution of 1.65 and 1.90 Å, respectively, and of St-DHQ1 in the complex with 8 (1.55 Å). The combination of these structural studies with extensive molecular dynamics simulation studies allowed us to understand the molecular basis of the type of inhibition observed. This study is a good example of the importance of achieving the correct geometry between the reactive center of the ligand (electrophile) and the enzyme nucleophile (lysine residue) to allow selective covalent modification. The outcomes obtained with the hydroxyamino derivative 6 also open up new possibilities in the design of irreversible inhibitors based on the use of amino substituents.

6.
Free Radic Biol Med ; 194: 42-51, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375737

RESUMEN

Hepatitis C, a liver inflammation caused by the hepatitis C virus (HCV), is treated with antiviral drugs. In this context, simeprevir (SIM) is an NS3/4A protease inhibitor used in HCV genotypes 1 and 4. It is orally administered and achieves high virological cure rates. Among adverse reactions associated with SIM treatment, photosensitivity reactions have been reported. In the present work, it is clearly shown that SIM is markedly phototoxic, according to the in vitro NRU assay using BALB/c 3T3 mouse fibroblast. This result sheds light on the nature of the photosensitivity reactions induced by SIM in HCV patients, suggesting that porphyrin elevation in patients treated with SIM may not be the only mechanism responsible for SIM-associated photosensitivity. Moreover, lipid photoperoxidation and protein photooxidation assays, using human skin fibroblasts (FSK) and human serum albumin (HSA), respectively, reveal the capability of this drug to promote photodamage to cellular membranes. Also, DNA photo lesions induced by SIM are noticed through comet assay in FSK cells. Photochemical and photobiological studies on the mechanism of SIM-mediated photodamage to biomolecules indicate that the key transient species generated upon SIM irradiation is the triplet excited state. This species is efficiently quenched by oxygen giving rise to singlet oxygen, which is responsible for the oxidation of lipids and DNA (Type II mechanism). In the presence of HSA, the photobehavior is dominated by binding to site 3 of the protein, to give a stable SIM@HSA complex. Inside the complex, quenching of the triplet excited state is less efficient, which results in a longer triplet lifetime and in a decreased singlet oxygen formation. Hence, SIM-mediated photooxidation of the protein is better explained through a radical (Type I) mechanism.


Asunto(s)
Hepatitis C , Oxígeno Singlete , Animales , Ratones , Humanos , Oxígeno Singlete/química , Simeprevir , Inhibidores de Proteasas , Antivirales/farmacología , Estrés Oxidativo , ADN/metabolismo
7.
Chem Sci ; 13(33): 9644-9654, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36091919

RESUMEN

Photosensitization by drugs is directly related with the excited species and the photoinduced processes arising from interaction with UVA light. In this context, the ability of gefitinib (GFT), a tyrosine kinase inhibitor (TKI) used for the treatment of a variety of cancers, to induce phototoxicity and photooxidation of proteins has recently been demonstrated. In principle, photodamage can be generated not only by a given drug but also by its photoactive metabolites that maintain the relevant chromophore. In the present work, a complete study of O-desmorpholinopropyl gefitinib (GFT-MB) has been performed by means of fluorescence and ultrafast transient absorption spectroscopies, in addition to molecular dynamics (MD) simulations. The photobehavior of the GFT-MB metabolite in solution is similar to that of GFT. However, when the drug or its metabolite are in a constrained environment, i.e. within a protein, their behavior and the photoinduced processes that arise from their interaction with UVA light are completely different. For GFT in complex with human serum albumin (HSA), locally excited (LE) singlet states are mainly formed; these species undergo photoinduced electron transfer with Tyr and Trp. By contrast, since GFT-MB is a phenol, excited state proton transfer (ESPT) to form phenolate-like excited species might become an alternative deactivation pathway. As a matter of fact, the protein-bound metabolite exhibits higher fluorescence yields and longer emission wavelengths and lifetimes than GFT@HSA. Ultrafast transient absorption measurements support direct ESPT deprotonation of LE states (rather than ICT), to form phenolate-like species. This is explained by MD simulations, which reveal a close interaction between the phenolic OH group of GFT-MB and Val116 within site 3 (subdomain IB) of HSA. The reported findings are relevant to understand the photosensitizing properties of TKIs and the role of biotransformation in this type of adverse side effects.

8.
ACS Omega ; 7(27): 23289-23301, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847303

RESUMEN

The reactivity of the diaminomaleonitrile-based imines containing hydroxyphenyl substituents with diverse aromatic aldehydes has been explored for the synthesis of novel highly substituted nitrogen heterocycles, which are considered privileged scaffolds in drug discovery. We report here a simple and efficient method for the regiocontrolled synthesis of a variety of 2-aryl-5-cyano-1-(2-hydroxyaryl)-1H-imidazole-4-carboxamides from 2-hydroxybenzylidene imines and aromatic aldehydes. Computational studies on the reaction path revealed that the regioselectivity of the reaction toward the formation of imidazole derivatives instead of 1,2-dihydropyrazines, most likely via a diaza-Cope rearrangement, is driven by the 2-hydroxyaryl group in the scaffold. The latter group promotes the intramolecular abstraction and protonation process in the cycloadduct intermediate, triggering the evolution of the reaction toward the formation of imidazole derivatives.

9.
Eur J Med Chem ; 232: 114206, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219949

RESUMEN

The therapeutic potential of 3H-pyrrolo[2,3-c]quinolines-the main core of Marinoquinoline natural products-has been explored for the development of new anti-TB agents. The chemical modification of various positions in this scaffold has led to the discovery of two pyrroloquinolines (compounds 50 and 54) with good in vitro activity against virulent strains of Mycobacterium tuberculosis (H37Rv, MIC = 4.1 µM and 4.2 µM, respectively). Enzymatic assays showed that both derivatives are inhibitors of glutamate-5-kinase (G5K, encoded by proB gene), an essential enzyme for this pathogen involved in the first step of the proline biosynthesis pathway. G5K catalyzes the phosphoryl-transference of the γ-phosphate group of ATP to L-glutamate to provide L-glutamyl-5-phosphate and ADP, and also regulates the synthesis of L-proline. The results of various molecular dynamics simulation studies revealed that the inhibition of G5K would be caused by allosteric interaction of these compounds with the interface between enzyme domains, against different pockets and with distinct recognition patterns. The binding of compound 54 promotes long-distance conformational changes at the L-glutamate binding site that would prevent it from anchoring for catalysis, while compound 50 alters the ATP binding site architecture for recognition. Enzyme assays revealed that compound 50 caused a substancial increase in the Kmapp for ATP, while no significant effect was observed for derivative 54. This work also demonstrates the potential of the G5K enzyme as a biological target for the development of new anti-TB drugs.


Asunto(s)
Mycobacterium tuberculosis , Quinolinas , Antituberculosos/farmacología , Sitios de Unión , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Prolina/farmacología , Quinolinas/farmacología
10.
Front Microbiol ; 12: 721826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421880

RESUMEN

ß-Lactam antibiotics represent about 70% of all antibacterial agents in clinical use. They are safe and highly effective drugs that have been used for more than 50 years, and, in general, well tolerated by most patients. However, its usefulness has been dramatically reduced with the spread and dissemination worldwide of multi-drug resistant bacteria. These pathogens elude the therapeutic action of these antibiotics by expressing ß-lactamase enzymes that catalyze the hydrolysis of their ß-lactam ring to give inactive products, which is one of the most relevant resistance mechanisms in deadly pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae. From the drug development point of view, the design of an efficient ß-lactamase inhibitor able to block this antibiotic resistance mechanism and restore ß-lactam antibiotics efficacy is challenging. This is due to: (1) the huge structural diversity of these enzymes in both the amino acid sequence and architecture of the active site; (2) the distinct hydrolytic capability against different types of substrates; (3) the variety of enzyme mechanisms of action employed, either involving covalent catalyzed processes (serine hydrolases) or non-covalent catalysis (zinc-dependent hydrolases); and (4) the increasing emergence and spread of bacterial pathogens capable of simultaneously producing diverse ß-lactamases. Hence, a long-pursued goal has been the development of ultrabroad-spectrum inhibitors able to inhibit both serine- and metallo-ß-lactamases. The recent development of taniborbactam (formerly VNRX-5133) and QPX7728, which are bicyclic boronate inhibitors currently under clinical development, represents a huge step forward in this goal. In this article, the molecular basis of the ultrabroad-spectrum of activity of these boron-based inhibitors is analyzed by molecular dynamics simulation studies using the available crystal structures in complex with both inhibitors, or the models constructed from wild-type forms. The efficacy of taniborbactam and QPX7728 is compared with the cyclic boronate inhibitor vaborbactam, which is the first boron-based ß-lactamase inhibitor approved by the FDA in combination with meropenem for the treatment of complicated urinary tract infections.

11.
Front Pharmacol ; 12: 694639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322022

RESUMEN

Crambescins are guanidine alkaloids from the sponge Crambe crambe. Crambescin C1 (CC) induces metallothionein genes and nitric oxide (NO) is one of the triggers. We studied and compared the in vitro, in vivo, and in silico effects of some crambescine A and C analogs. HepG2 gene expression was analyzed using microarrays. Vasodilation was studied in rat aortic rings. In vivo hypotensive effect was directly measured in anesthetized rats. The targets of crambescines were studied in silico. CC and homo-crambescine C1 (HCC), but not crambescine A1 (CA), induced metallothioneins transcripts. CC increased NO production in HepG2 cells. In isolated rat aortic rings, CC and HCC induced an endothelium-dependent relaxation related to eNOS activation and an endothelium-independent relaxation related to iNOS activation, hence both compounds increase NO and reduce vascular tone. In silico analysis also points to eNOS and iNOS as targets of Crambescin C1 and source of NO increment. CC effect is mediated through crambescin binding to the active site of eNOS and iNOS. CC docking studies in iNOS and eNOS active site revealed hydrogen bonding of the hydroxylated chain with residues Glu377 and Glu361, involved in the substrate recognition, and explains its higher binding affinity than CA. The later interaction and the extra polar contacts with its pyrimidine moiety, absent in the endogenous substrate, explain its role as exogenous substrate of NOSs and NO production. Our results suggest that CC serve as a basis to develop new useful drugs when bioavailability of NO is perturbed.

12.
J Med Chem ; 64(9): 6310-6328, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33913328

RESUMEN

Pseudomonas aeruginosa, a major cause of nosocomial infections, is considered a paradigm of antimicrobial resistance, largely due to hyperproduction of chromosomal cephalosporinase AmpC. Here, we explore the ability of 6-pyridylmethylidene penicillin-based sulfones 1-3 to inactivate the AmpC ß-lactamase and thus rescue the activity of the antipseudomonal ceftazidime. These compounds increased the susceptibility to ceftazidime in a collection of clinical isolates and PAO1 mutant strains with different ampC expression levels and also improved the inhibition kinetics relative to avibactam, displaying a slow deacylation rate and involving the formation of an indolizine adduct. Bromide 2 was the inhibitor with the lowest KI (15.6 nM) and the highest inhibitory efficiency (kinact/KI). Computational studies using diverse AmpC enzymes revealed that the aromatic moiety in 1-3 targets a tunnel-like site adjacent to the catalytic serine and induces the folding of the H10 helix, indicating the potential value of this not-always-evident pocket in drug design.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Penicilinas/química , Penicilinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Sulfonas/química , Resistencia betalactámica/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Cinética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas
13.
Front Pharmacol ; 11: 576495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192518

RESUMEN

Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to serum proteins and is readily biotransformed in humans, giving rise to several metabolites, such as N- and O-dealkylated products (N-LAP and O-LAP, respectively). In this context, the aim of the present work is to obtain key information on drug@protein complexation, the first step involved in a number of hypersensitivity reactions, by a combination of fluorescence, femtosecond transient absorption spectroscopy and molecular dynamics (MD) simulations. Following this approach, the behavior of LAP and its metabolites has been investigated in the presence of serum proteins, such as albumins and α1-acid glycoproteins (SAs and AGs, respectively) from human and bovine origin. Fluorescence results pointed to a higher affinity of LAP and its metabolites to human proteins; the highest one was found for LAP@HSA. This is associated to the coplanar orientation adopted by the furan and quinazoline rings of LAP, which favors emission from long-lived (up to the ns time-scale) locally-excited (LE) states, disfavoring population of intramolecular charge transfer (ICT) states. Moreover, the highly constrained environment provided by subdomain IB of HSA resulted in a frozen conformation of the ligand, contributing to fluorescence enhancement. Computational studies were clearly in line with the experimental observations, providing valuable insight into the nature of the binding sites and the conformational arrangement of the ligands inside the protein cavities. Besides, a good correlation was found between the calculated binding energies for each ligand@protein complex and the relative affinities observed in competition experiments.

14.
J Antimicrob Chemother ; 75(11): 3209-3217, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32728723

RESUMEN

BACKGROUND: Pseudomonas aeruginosa may develop resistance to novel cephalosporin/ß-lactamase inhibitor combinations during therapy through the acquisition of structural mutations in AmpC. OBJECTIVES: To describe the molecular and biochemical mechanisms involved in the development of resistance to ceftolozane/tazobactam in vivo through the selection and overproduction of a novel AmpC variant, designated PDC-315. METHODS: Paired susceptible/resistant isolates obtained before and during ceftolozane/tazobactam treatment were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. Characterization of the novel PDC-315 variant was performed through genotypic and biochemical studies. The effects at the molecular level of the Asp245Asn change were analysed by molecular dynamics simulations using Amber. RESULTS: WGS identified mutations leading to modification (Asp245Asn) and overproduction of AmpC. Susceptibility testing revealed that PAOΔC producing PDC-315 displayed increased MICs of ceftolozane/tazobactam, decreased MICs of piperacillin/tazobactam and imipenem and similar susceptibility to ceftazidime/avibactam compared with WT PDCs. The catalytic efficiency of PDC-315 for ceftolozane was 10-fold higher in relation to the WT PDCs, but 3.5- and 5-fold lower for piperacillin and imipenem. IC50 values indicated strong inhibition of PDC-315 by avibactam, but resistance to cloxacillin inhibition. Analysis at the atomic level explained that the particular behaviour of PDC-315 is linked to conformational changes in the H10 helix that favour the approximation of key catalytic residues to the active site. CONCLUSIONS: We deciphered the precise mechanisms that led to the in vivo emergence of resistance to ceftolozane/tazobactam in P. aeruginosa through the selection of the novel PDC-315 enzyme. The characterization of this new variant expands our knowledge about AmpC-mediated resistance to cephalosporin/ß-lactamase inhibitors in P. aeruginosa.


Asunto(s)
Infecciones por Pseudomonas , Antibacterianos/farmacología , Cefalosporinas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacología
15.
Chemistry ; 26(68): 15922-15930, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32585059

RESUMEN

Lapatinib (LAP) is an anticancer drug, which is metabolized to the N- and O-dealkylated products (N-LAP and O-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP, N-LAP and O-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (λmax =550 nm) to ICT states (λmax =480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extent N-LAP) within HSA, explaining the experimental results.


Asunto(s)
Antineoplásicos , Lapatinib , Antineoplásicos/química , Humanos , Lapatinib/química , Simulación de Dinámica Molecular , Albúmina Sérica Humana/química , Análisis Espectral
16.
Chemistry ; 26(36): 8035-8044, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32259333

RESUMEN

Disabling the bacterial capacity to cause infection is an innovative approach that has attracted significant attention to fight against superbugs. A relevant target for anti-virulence drug discovery is the type I dehydroquinase (DHQ1) enzyme. It was shown that the 2-hydroxyethylammonium derivative 3 has in vitro activity since it causes the covalent modification of the catalytic lysine residue of DHQ1. As this compound does not bear reactive electrophilic centers, how the chemical modification occurs is intriguing. We report here an integrated approach, which involves biochemical studies, X-ray crystallography and computational studies on the reaction path using combined quantum mechanics/molecular mechanics Umbrella Sampling Molecular Dynamics, that evidences that DHQ1 catalyzes its self-immolation by transforming the unreactive 2-hydroxyethylammonium group in 3 into an epoxide that triggers the lysine covalent modification. This finding might open opportunities for the design of lysine-targeted irreversible inhibitors bearing a 2-hydroxyethylammonium moiety as an epoxide proform, which to our knowledge has not been reported previously.


Asunto(s)
Bacterias/química , Inhibidores Enzimáticos/química , Compuestos Epoxi/química , Hidroliasas/química , Bacterias/metabolismo , Catálisis , Descubrimiento de Drogas , Hidroliasas/metabolismo , Lisina , Simulación de Dinámica Molecular
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117652, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31654902

RESUMEN

Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its two demethylated metabolites (MCPZ and DCPZ). Thus, solutions containing CPZ, MCPZ or DCPZ and HSA (molar ligand:protein ratios between 1:0 and 1:3) were submitted to laser flash photolysis and the ΔAmax value at λ = 470 nm, corresponding to the triplet excited state, was monitored. In all cases, the protein-bound ligand exhibited higher ΔAmax values measured after the laser pulse and were also considerably longer-lived than the non-complexed forms. This is in agreement with an enhanced hydrophilicity of the metabolites, due to the replacement of methyl groups with H that led to a lower extent of protein binding. For the three compounds, laser flash photolysis displacement experiments using warfarin or ibuprofen indicated Sudlow site I as the main binding site. Docking and molecular dynamics simulation studies revealed that the binding mode of the two demethylated ligands with HSA would be remarkable different from CPZ, specially for DCPZ, which appears to come from the different ability of their terminal ammonium groups to stablish hydrogen bonding interactions with the negatively charged residues within the protein pocket (Glu153, Glu292) as well as to allocate the methyl groups in an apolar environment. DCPZ would be rotated 180° in relation to CPZ locating the aromatic ring away from the Sudlow site I of HSA.


Asunto(s)
Clorpromazina/química , Clorpromazina/farmacocinética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Antipsicóticos/química , Antipsicóticos/farmacocinética , Sitios de Unión , Carbazoles/química , Carbazoles/farmacocinética , Clorpromazina/análogos & derivados , Clorpromazina/farmacología , Interacciones Farmacológicas , Humanos , Enlace de Hidrógeno , Inactivación Metabólica , Metilación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Albúmina Sérica Humana/efectos de los fármacos , Espectrofotometría Ultravioleta , Estereoisomerismo
18.
Front Pharmacol ; 10: 1028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616294

RESUMEN

Triflusal is a platelet antiaggregant employed for the treatment and prevention of thromboembolic diseases. After administration, it is biotransformed into its active metabolite, the 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). We present here an investigation on HTB photobinding to human serum albumin (HSA), the most abundant protein in plasma, using an approach that combines fluorescence, MS/MS, and peptide fingerprint analysis as well as theoretical calculations (docking and molecular dynamics simulation studies). The proteomic analysis of HTB/HSA photolysates shows that HTB addition takes place at the ε-amino groups of the Lys137, Lys199, Lys205, Lys351, Lys432, Lys525, Lys541 and Lys545 residues and involves replacement of the trifluoromethyl moiety of HTB with a new amide function. Only Lys199 is located in an internal pocket of the protein, and the remaining modified residues are placed in the external part. Docking and molecular dynamic simulation studies reveal that HTB supramolecular binding to HSA occurs in the "V-cleft" region and that the process is assisted by the presence of Glu/Asp residues in the neighborhood of the external Lys, in agreement with the experimentally observed modifications. In principle, photobinding can occur with other trifluoroaromatic compounds and may be responsible for the appearance of undesired photoallergic side effects.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31383659

RESUMEN

Selection of extended-spectrum mutations in narrow-spectrum oxacillinases (e.g., OXA-2 and OXA-10) is an emerging mechanism for development of in vivo resistance to ceftolozane-tazobactam and ceftazidime-avibactam in Pseudomonas aeruginosa Detection of these challenging enzymes therefore seems essential to prevent clinical failure, but the complex phenotypic plasticity exhibited by this species may often lead to their underestimation. The underlying resistance mechanisms of two sequence type 175 (ST175) P. aeruginosa isolates showing multidrug-resistant phenotypes and recovered at early and late stages of a long-term nosocomial infection were evaluated. Whole-genome sequencing (WGS) was used to investigate resistance genomics, whereas molecular and biochemical methods were used for characterization of a novel extended-spectrum OXA-2 variant selected during therapy. The metallo-ß-lactamase blaVIM-20 and the narrow-spectrum oxacillinase blaOXA-2 were present in both isolates, although they differed by an inactivating mutation in the mexB subunit, present only in the early isolate, and in a mutation in the blaOXA-2 ß-lactamase, present only in the final isolate. The new OXA-2 variant, designated OXA-681, conferred elevated MICs of the novel cephalosporin-ß-lactamase inhibitor combinations in a PAO1 background. Compared to OXA-2, kinetic parameters of the OXA-681 enzyme revealed a substantial increase in the hydrolysis of cephalosporins, including ceftolozane. We describe the emergence of the novel variant OXA-681 during treatment of a nosocomial infection caused by a Pseudomonas aeruginosa ST175 high-risk clone. The ability of OXA-681 to confer cross-resistance to ceftolozane-tazobactam and ceftazidime-avibactam together with the complex antimicrobial resistance profiles exhibited by the clinical strains harboring this new enzyme argue for maintaining active surveillance on emerging broad-spectrum resistance in P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , Combinación de Medicamentos , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Tazobactam/farmacología , Tazobactam/uso terapéutico , Secuenciación Completa del Genoma , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
20.
J Org Chem ; 83(21): 13019-13029, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30274513

RESUMEN

Latent electrophiles are nowadays very attractive chemical entities for drug discovery, as they are unreactive unless activated upon binding with the specific target. In this work, the utility of 4-trifluoromethyl phenols as precursors of latent electrophiles, quinone methides (QM), for lysine-targeting is demonstrated. These Michael acceptors were photogenerated for specific covalent modification of lysine residues using human serum albumin (HSA) as a model target. The reactive QM-type intermediates I or II, generated upon irradiation of 4-trifluoromethyl-1-naphthol (1)@HSA or 4-(4-trifluorometylphenyl)phenol (2)@HSA complexes, exhibited chemoselective reactivity toward lysine residues leading to amide adducts, which was confirmed by proteomic analysis. For ligand 1, the covalent modification of residues Lys106 and Lys414 (located in subdomains IA and IIIA, respectively) was observed, whereas for ligand 2, the modification of Lys195 (in subdomain IIA) took place. Docking and molecular dynamics simulation studies provided an insight into the molecular basis of the selectivity of 1 and 2 for these HSA subdomains and the covalent modification mechanism. These studies open the opportunity of performing protein silencing by generating reactive ligands under very mild conditions (irradiation) for specific covalent modification of hidden lysine residues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...