Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomol NMR Assign ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951472

RESUMEN

The α-synuclein (α-syn) amyloid fibrils are involved in various neurogenerative diseases. Solid-state NMR (ssNMR) has been showed as a powerful tool to study α-syn aggregates. Here, we report the 1H, 13C and 15N back-bone chemical shifts of a new α-syn polymorph obtained using proton-detected ssNMR spectroscopy under fast (95 kHz) magic-angle spinning conditions. The manual chemical shift assignments were cross-validated using FLYA algorithm. The secondary structural elements of α-syn fibrils were calculated using 13C chemical shift differences and TALOS software.

2.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683963

RESUMEN

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


Asunto(s)
alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Secuencias de Aminoácidos
3.
ACS Omega ; 9(8): 8874-8884, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434855

RESUMEN

The cyclodextrin-based metal-organic frameworks (CD MOFs) are a suitable molecular platform for drug delivery systems of various active pharmaceutical ingredients (APIs). The low toxicity and cost-efficient synthesis make CD MOFs an attractive host for the encapsulation of APIs. In this study, we created a model system based on γCD-K MOFs with widely used drugs carmofur (HCFU), 5-fluorouracil (5-FU), and salicylic acid (HBA) to study host-guest encapsulation methods using different crystallization protocols. The host-guest complexes of API:CD MOF in an in-depth study were investigated by liquid chromatography-mass spectrometry (LC-MS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 19F- and 13C-detected solid-state NMR spectroscopy (ssNMR). These techniques confirmed the structure and interaction sites within the encapsulation product in the host-guest complex. We also evaluated the toxicity and biocompatibility of the API:CD MOF complex using in vitro and in vivo methods. The cytotoxicity, hepatotoxicity, and neurotoxicity were established with cell lines of fibroblasts (BJ), human liver cell line (HepG2), and human oligodendrocytic cells (MO3.13). Then, Danio rerio was used as an in vivo experimental model of ecotoxicity. The results showed the choice of γCD-K-5 as the most protective and safe option for drug encapsulation to decrease its toxicity level against normal cells.

4.
NPJ Biofilms Microbiomes ; 9(1): 68, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739955

RESUMEN

Biofilms are bacterial communities that result from a cell differentiation process leading to the secretion of an extracellular matrix (ECM) by part of the population. In Bacillus subtilis, the main protein component of the ECM is TasA, which forms a fiber-based scaffold that confers structure to the ECM. The N-terminal half of TasA is strongly conserved among Bacillus species and contains a protein domain, the rigid core (RcTasA), which is critical for the structural and functional properties of the recombinant protein. In this study, we demonstrate that recombinantly purified RcTasA in vitro retains biochemical properties previously observed for the entire protein. Further analysis of the RcTasA amino acid sequence revealed two aggregation-prone stretches and a region of imperfect amino acid repeats, which are known to contribute to functional amyloid assembly. Biochemical characterization of these stretches found in RcTasA revealed their amyloid-like capacity in vitro, contributing to the amyloid nature of RcTasA. Moreover, the study of the imperfect amino acid repeats revealed the critical role of residues D64, K68 and D69 in the structural function of TasA. Experiments with versions of TasA carrying the substitutions D64A and K68AD69A demonstrated a partial loss of function of the protein either in the assembly of the ECM or in the stability of the core and amyloid-like properties. Taken together, our findings allow us to better understand the polymerization process of TasA during biofilm formation and provide knowledge into the sequence determinants that promote the molecular behavior of protein filaments in bacteria.


Asunto(s)
Proteínas Amiloidogénicas , Bacillus subtilis , Bacillus subtilis/genética , Proteínas Amiloidogénicas/genética , Aminoácidos , Biopelículas , Matriz Extracelular
5.
J Biomol NMR ; 77(3): 121-130, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289306

RESUMEN

Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-ß arrangement rich in ß-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.


Asunto(s)
Amiloide , Imagen por Resonancia Magnética , Amiloide/química , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos , Proteínas Amiloidogénicas
6.
Front Mol Biosci ; 10: 1148302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065450

RESUMEN

Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300-414), TDP-11 (TDP-43300-399), and TDP-10 (TDP-43314-414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.

7.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719915

RESUMEN

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Asunto(s)
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporas Fúngicas/metabolismo , Proteínas Fúngicas/metabolismo , Polisacáridos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Pared Celular/metabolismo
8.
Nat Commun ; 13(1): 7436, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470884

RESUMEN

Halogen bonding (XB), a non-covalent interaction between an electron-deficient halogen atom and a Lewis base, is widely adopted in organic synthesis and supramolecular crystal engineering. However, the roadmap towards materials applications is hindered by the challenges in harnessing this relatively weak intermolecular interaction to devise human-commanded stimuli-responsive soft materials. Here, we report a liquid crystalline network comprising permanent covalent crosslinks and dynamic halogen bond crosslinks, which possess reversible thermo-responsive shape memory behaviour. Our findings suggest that I···N halogen bond, a paradigmatic motif in crystal engineering studies, enables temporary shape fixation at room temperature and subsequent shape recovery in response to human body temperature. We demonstrate versatile shape programming of the halogen-bonded polymer networks through human-hand operation and propose a micro-robotic injection model for complex 1D to 3D shape morphing in aqueous media at 37 °C. Through systematic structure-property-performance studies, we show the necessity of the I···N crosslinks in driving the shape memory effect. The halogen-bonded shape memory polymers expand the toolbox for the preparation of smart supramolecular constructs with tailored mechanical properties and thermoresponsive behaviour, for the needs of, e.g., future medical devices.


Asunto(s)
Materiales Inteligentes , Humanos , Halógenos/química , Polímeros/química , Temperatura
9.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352173

RESUMEN

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Asunto(s)
Amiloide , Priones , Amiloide/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas Amiloidogénicas , Imagen por Resonancia Magnética
10.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743221

RESUMEN

S100A9 is a pro-inflammatory protein that co-aggregates with other proteins in amyloid fibril plaques. S100A9 can influence the aggregation kinetics and amyloid fibril structure of alpha-synuclein (α-syn), which is involved in Parkinson's disease. Currently, there are limited data regarding their cross-interaction and how it influences the aggregation process. In this work, we analyzed this interaction using solution 19F and 2D 15N-1H HSQC NMR spectroscopy and studied the aggregation properties of these two proteins. Here, we show that α-syn interacts with S100A9 at specific regions, which are also essential in the first step of aggregation. We also demonstrate that the 4-fluorophenylalanine label in alpha-synuclein is a sensitive probe to study interaction and aggregation using 19F NMR spectroscopy.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Calgranulina B , Humanos , Espectroscopía de Resonancia Magnética/métodos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
11.
Biomolecules ; 12(3)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35327628

RESUMEN

The distinct neuropathological features of the different α-Synucleinopathies, as well as the diversity of the α-Synuclein (α-Syn) intracellular inclusion bodies observed in post mortem brain sections, are thought to reflect the strain diversity characterizing invasive α-Syn amyloids. However, this "one strain, one disease" view is still hypothetical, and to date, a possible disease-specific contribution of non-amyloid factors has not been ruled out. In Multiple System Atrophy (MSA), the buildup of α-Syn inclusions in oligodendrocytes seems to result from the terminal storage of α-Syn amyloid aggregates first pre-assembled in neurons. This assembly occurs at the level of neuronal cytoplasmic inclusions, and even earlier, within neuronal intranuclear inclusions (NIIs). Intriguingly, α-Syn NIIs are never observed in α-Synucleinopathies other than MSA, suggesting that these inclusions originate (i) from the unique molecular properties of the α-Syn fibril strains encountered in this disease, or alternatively, (ii) from other factors specifically dysregulated in MSA and driving the intranuclear fibrillization of α-Syn. We report the isolation and structural characterization of a synthetic human α-Syn fibril strain uniquely capable of seeding α-Syn fibrillization inside the nuclear compartment. In primary mouse cortical neurons, this strain provokes the buildup of NIIs with a remarkable morphology reminiscent of cat's eye marbles (see video abstract). These α-Syn inclusions form giant patterns made of one, two, or three lentiform beams that span the whole intranuclear volume, pushing apart the chromatin. The input fibrils are no longer detectable inside the NIIs, where they become dominated by the aggregation of endogenous α-Syn. In addition to its phosphorylation at S129, α-Syn forming the NIIs acquires an epitope antibody reactivity profile that indicates its organization into fibrils, and is associated with the classical markers of α-Syn pathology p62 and ubiquitin. NIIs are also observed in vivo after intracerebral injection of the fibril strain in mice. Our data thus show that the ability to seed NIIs is a strain property that is integrally encoded in the fibril supramolecular architecture. Upstream alterations of cellular mechanisms are not required. In contrast to the lentiform TDP-43 NIIs, which are observed in certain frontotemporal dementias and which are conditional upon GRN or VCP mutations, our data support the hypothesis that the presence of α-Syn NIIs in MSA is instead purely amyloid-strain-dependent.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Amiloide , Animales , Encéfalo/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Ratones , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Neuronas/metabolismo , alfa-Sinucleína/metabolismo
12.
J Biomol NMR ; 75(10-12): 417-427, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34813018

RESUMEN

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.


Asunto(s)
Proteínas , Protones , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
13.
Front Mol Neurosci ; 14: 670513, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276304

RESUMEN

Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.

14.
Angew Chem Int Ed Engl ; 60(10): 5339-5347, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33205864

RESUMEN

The Hepatitis C virus nonstructural protein 5A (NS5A) is a membrane-associated protein involved in multiple steps of the viral life cycle. Direct-acting antivirals (DAAs) targeting NS5A are a cornerstone of antiviral therapy, but the mode-of-action of these drugs is poorly understood. This is due to the lack of information on the membrane-bound NS5A structure. Herein, we present the structural model of an NS5A AH-linker-D1 protein reconstituted as proteoliposomes. We use highly sensitive proton-detected solid-state NMR methods suitable to study samples generated through synthetic biology approaches. Spectra analyses disclose that both the AH membrane anchor and the linker are highly flexible. Paramagnetic relaxation enhancements (PRE) reveal that the dimer organization in lipids requires a new type of NS5A self-interaction not reflected in previous crystal structures. In conclusion, we provide the first characterization of NS5A AH-linker-D1 in a lipidic environment shedding light onto the mode-of-action of clinically used NS5A inhibitors.


Asunto(s)
Hepacivirus/química , Membrana Dobles de Lípidos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Membrana Dobles de Lípidos/química , Resonancia Magnética Nuclear Biomolecular , Fosfatidiletanolaminas/química , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Espectroscopía de Protones por Resonancia Magnética , Proteínas no Estructurales Virales/química
15.
Sci Adv ; 6(40)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33008896

RESUMEN

The conformational strain diversity characterizing α-synuclein (α-syn) amyloid fibrils is thought to determine the different clinical presentations of neurodegenerative diseases underpinned by a synucleinopathy. Experimentally, various α-syn fibril polymorphs have been obtained from distinct fibrillization conditions by altering the medium constituents and were selected by amyloid monitoring using the probe thioflavin T (ThT). We report that, concurrent with classical ThT-positive products, fibrillization in saline also gives rise to polymorphs invisible to ThT (τ-). The generation of τ- fibril polymorphs is stochastic and can skew the apparent fibrillization kinetics revealed by ThT. Their emergence has thus been ignored so far or mistaken for fibrillization inhibitions/failures. They present a yet undescribed atomic organization and show an exacerbated propensity toward self-replication in cortical neurons, and in living mice, their injection into the substantia nigra pars compacta triggers a synucleinopathy that spreads toward the dorsal striatum, the nucleus accumbens, and the insular cortex.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Amiloide , Animales , Benzotiazoles , Ratones , Neuronas
16.
J Mol Biol ; 432(23): 6005-6027, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33058872

RESUMEN

In filamentous fungi, amyloid signaling sequences allow Nod-like receptors (NLRs) to activate downstream cell-death inducing proteins with HeLo and HeLo-like (HELL) domains and amyloid RHIM and RHIM-related motifs control immune defense pathways in mammals and flies. Herein, we show bioinformatically that analogous amyloid signaling motifs exist in bacteria. These short motifs are found at the N terminus of NLRs and at the C terminus of proteins with a domain we term BELL. The corresponding NLR and BELL proteins are encoded by adjacent genes. We identify 10 families of such bacterial amyloid signaling sequences (BASS), one of which (BASS3) is homologous to RHIM and a fungal amyloid motif termed PP. BASS motifs occur nearly exclusively in bacteria forming multicellular structures (mainly in Actinobacteria and Cyanobacteria). We analyze experimentally a subset of seven of these motifs (from the most common BASS1 family and the RHIM-related BASS3 family) and find that these sequences form fibrils in vitro. Using a fungal in vivo model, we show that all tested BASS-motifs form prions and that the NLR-side motifs seed prion-formation of the corresponding BELL-side motif. We find that BASS3 motifs show partial prion cross-seeding with mammalian RHIM and fungal PP-motifs and that proline mutations on key positions of the BASS3 core motif, conserved in RHIM and PP-motifs, abolish prion formation. This work expands the paradigm of prion amyloid signaling to multicellular prokaryotes and suggests a long-term evolutionary conservation of these motifs from bacteria, to fungi and animals.


Asunto(s)
Amiloide/genética , Evolución Molecular , Inmunidad Innata/genética , Proteínas NLR/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Proteínas Amiloidogénicas/genética , Animales , Cianobacterias/genética , Drosophila/genética , Hongos/genética , Genoma Bacteriano/genética , Priones/genética , Transducción de Señal/genética
17.
J Magn Reson ; 311: 106680, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31951864

RESUMEN

Despite breakthroughs in MAS NMR hardware and experimental methodologies, sensitivity remains a major challenge for large and complex biological systems. Here, we report that 3-4 fold higher sensitivities can be obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments that are otherwise time-prohibitive, such as 2D 15N-15N proton-driven spin diffusion and 15N-13C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins - demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of applications, especially for biological systems suffering from low intrinsic sensitivity and at physiological temperatures.


Asunto(s)
Cianuro de Hidrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas de la Cápside/química , Carbono/química , Frío , Escherichia coli/química , Hongos/química , VIH-1/química , Humanos , Indicadores y Reactivos , Cinesinas/química , Microscopía Electrónica de Transmisión , Microtúbulos/química , Microtúbulos/ultraestructura , Proteínas Priónicas/química , Sensibilidad y Especificidad , Temperatura
18.
FEBS J ; 287(12): 2449-2467, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31782904

RESUMEN

The TAR DNA-binding protein (TDP-43) self-assembles into prion-like aggregates considered to be the structural hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we use a combination of electron microscopy, X-ray fiber diffraction, Fourier-transform infrared spectroscopy analysis, and solid-state NMR spectroscopy to investigate the molecular organization of different TDP constructs, namely the full-length TDP-43 (1-414), two C-terminal fragments [TDP-35 (90-414) and TDP-16 (267-414)], and a C-terminal truncated fragment (TDP-43 ∆GaroS2), in their fibrillar state. Although the different protein constructs exhibit similar fibril morphology and a typical cross-ß signature by X-ray diffraction, solid-state NMR indicates that TDP-43 and TDP-35 share the same polymorphic molecular structure, while TDP-16 encompasses a well-ordered amyloid core. We identified several residues in the so-called C-terminal GaroS2 (368-414) domain that participates in the rigid core of TDP-16 fibrils, underlining its importance during the aggregation process. Our findings demonstrate that C-terminal fragments can adopt a different molecular conformation in isolation or in the context of the full-length assembly, suggesting that the N-terminal domain and RRM domains play an important role in the TDP-43 amyloid transition.


Asunto(s)
Amiloide/química , Proteínas de Unión al ADN/química , Agregado de Proteínas , Proteínas de Unión al ADN/aislamiento & purificación , Humanos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
19.
J Biomol NMR ; 72(1-2): 69-78, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30206780

RESUMEN

The assignment of protein backbone and side-chain NMR chemical shifts is the first step towards the characterization of protein structure. The recent introduction of proton detection in combination with fast MAS has opened up novel opportunities for assignment experiments. However, typical 3D sequential-assignment experiments using proton detection under fast MAS lead to signal intensities much smaller than the theoretically expected ones due to the low transfer efficiency of some of the steps. Here, we present a selective 3D experiment for deuterated and (amide) proton back-exchanged proteins where polarization is directly transferred from backbone nitrogen to selected backbone or sidechain carbons. The proposed pulse sequence uses only 1H-15N cross-polarization (CP) transfers, which are, for deuterated proteins, about 30% more efficient than 1H-13C CP transfers, and employs a dipolar version of the INEPT experiment for N-C transfer. By avoiding HN-C (HN stands for amide protons) and C-C CP transfers, we could achieve higher selectivity and increased signal intensities compared to other pulse sequences containing long-range CP transfers. The REDOR transfer is designed with an additional selective π pulse, which enables the selective transfer of the polarization to the desired 13C spins.


Asunto(s)
Amidas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Isótopos de Carbono , Deuterio , Isótopos de Nitrógeno
20.
J Biomol NMR ; 69(2): 81-91, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28900789

RESUMEN

We here adapted the GRecon method used in electron microscopy studies for membrane protein reconstitution to the needs of solid-state NMR sample preparation. We followed in detail the reconstitution of the ABC transporter BmrA by dialysis as a reference, and established optimal reconstitution conditions using the combined sucrose/cyclodextrin/lipid gradient characterizing GRecon. We established conditions under which quantitative reconstitution of active protein at low lipid-to-protein ratios can be obtained, and also how to upscale these conditions in order to produce adequate amounts for NMR. NMR spectra recorded on a sample produced by GRecon showed a highly similar fingerprint as those recorded previously on samples reconstituted by dialysis. GRecon sample preparation presents a gain in time of nearly an order of magnitude for reconstitution, and shall represent a valuable alternative in solid-state NMR membrane protein sample preparation.


Asunto(s)
Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Bacterianas/química , Lípidos/química , Espectrometría de Masas , Proteínas de Transporte de Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...