Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843128

RESUMEN

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Asunto(s)
Aductos de ADN , ADN , Animales , Femenino , Humanos , Masculino , Ratas , Cromatografía Liquida/métodos , ADN/química , Aductos de ADN/genética , Roedores , Espectrometría de Masas en Tándem/métodos
3.
Chemosphere ; 338: 139522, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37478996

RESUMEN

In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Humanos , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Sistema Endocrino , Ecotoxicología , Daño del ADN , Exposición a Riesgos Ambientales
4.
World J Gastrointest Oncol ; 15(3): 504-522, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37009316

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common digestive system cancers with high mortality rates worldwide. The main ingredients in Mu Ji Fang Granules (MJF) are alkaloids, flavonoids, and polysaccharides. MJF has been used in the clinical treatment of hepatitis, cirrhosis and HCC for more than 30 years. Few previous studies have focused on the mechanism of MJF on tumor immu-nology in the treatment of HCC. AIM: To explore the mechanism of action of MJF on tumor immunology in the treatment of HCC. METHODS: The absorbable ingredients of MJF were identified using Molecule Network related to High Performance Liquid Chromatography-Electron Spray Ionization-Time of Flight- Mass Spectrometry, and hub potential anti-HCC targets were screened using network pharmacology and pathway enrichment analysis. Forty male mice were randomly divided into the Blank, Model, and MJF groups (1.8, 5.4, and 10.8 g/kg/d) following 7 d of oral administration. Average body weight gain, spleen and thymus indices were calculated, tumor tissues were stained with hematoxylin and eosin, and Interferon gamma (IFN-γ), Tumor necrosis factor α (TNF-α), Interleukin-2, aspartate aminotransferase, alanine aminotransferase, alpha-fetoprotein (AFP), Fas, and FasL were measured by Enzyme-linked Immunosorbent Assay. Relevant mRNA expression of Bax and Bcl2 was evaluated by Real Time Quantitative PCR (RT-qPCR) and protein expression of Transforming growth factor ß1 (TGF-ß1) and Mothers against decapentaplegic homolog (SMAD) 4 was assessed by Western blotting. The HepG2 cell line was treated with 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL of MJF, and another 3 groups were treated with TGF-ß1 inhibitor (LY364947) and different doses of MJF. Relevant mRNA expression of TNF-α, IFN-γ, Bax and Bcl2 was evaluated by RT-qPCR and protein expression of TGF-ß1, SMAD2, p-SMAD2, SMAD4, and SMAD7 was assessed by Western blotting. RESULTS: It was shown that MJF improved body weight gain and tumor inhibition rate in H22 tumor-bearing mice, protected immune organs and liver function, reduced the HCC indicator AFP, affected immunity and apoptosis, and up-regulated the TGF-ß1/SMAD signaling pathway, by increasing the relative expression of TGF-ß1, SMAD2, p-SMAD2 and SMAD4 and decreasing SMAD7, reducing immune factors TNF-α and IFN-γ, decreasing apoptosis cytokines Fas, FasL and Bcl2/Bax, and inhibiting the effect of LY364947 in HepG2 cells. CONCLUSION: MJF inhibits HCC by activating the TGF-ß1/SMAD signaling pathway, and affecting immune and apoptotic cytokines, which may be due to MJF adjusting immune escape and apoptosis.

5.
Metallomics ; 14(9)2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36066904

RESUMEN

Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.


Asunto(s)
Escherichia coli K12 , Nucleósido Q , Anticodón , Cadmio , Cobalto , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Homeostasis , Peróxido de Hidrógeno , Níquel , Nucleósido Q/metabolismo , Estrés Oxidativo , Paraquat , Fenotipo , Proteómica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Especies Reactivas de Oxígeno
6.
Biomed Pharmacother ; 152: 113278, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35709655

RESUMEN

Colitis-associated cancer (CAC) is the colorectal cancer (CRC) subtype that is difficult to treat, and shows high mortality. The consumption of flavonoid-rich fructus aurantii extracts (FAE) has been associated with multiple beneficial effects including anti-inflammatory and anti-cancer properties, but the potential effects on the colitis-associated carcinogenesis have not been thoroughly investigated. Recent clinical data show that, as yet, few agents clearly inhibited CRC development in long-standing inflammatory bowel diseases. Here, we identified that FAE showed significant efficiency to inhibit HT-29 cell proliferation. The potential of FAE in vivo was further evaluated in an AOM/DSS-induced CAC mouse model. Intriguingly, FAE diminished the number of polyps in mice. Furthermore, FAE inhibited CAC by regulating the gene expression of Notch/ NF-κB/IL-1 signaling pathways. Collectively, these results were indicative of FAE has great potential in CAC prevention and treatment.


Asunto(s)
Colitis , FN-kappa B , Animales , Carcinogénesis , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Etanol/efectos adversos , Interleucina-1 , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Extractos Vegetales/efectos adversos , Transducción de Señal
7.
Anal Methods ; 14(6): 652-660, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35081194

RESUMEN

In this work, a new method of resonance light scattering was developed for the sensitive and selective detection of butachlor. Firstly, buckwheat was used as the main carbon source to prepare a new type of doped carbon quantum dot using the hydrothermal method. A new method for the determination of butachlor was then established by the change in resonance light scattering intensity after the addition of butachlor into the doped carbon quantum dot solution. The detection effect was successfully optimized by investigating the optimum reaction conditions. Under the optimum conditions, the resonance light scattering intensity of doped carbon quantum dots was greatly enhanced at 460 nm after the addition of butachlor, and the intensity changes were linearly correlated with the butachlor concentration in the range of 1-7 µg L-1. The detection limit was 0.136 µg L-1, and the recoveries ranged between 98.6% and 101.8%. This method was also used for butachlor detection in environmental water.


Asunto(s)
Puntos Cuánticos , Acetanilidas , Carbono , Colorantes Fluorescentes , Nitrógeno
8.
Toxicol Appl Pharmacol ; 377: 114633, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31229487

RESUMEN

Arsenic in drinking water is a worldwide public health problem due to its pathogenic induction of oxidative stress in various organ systems. Phytochemicals present in polyphenolic-rich fruits such as black raspberries (BRBs) have diverse health benefits, including antioxidation and modulation of enzymes in xenobiotic metabolism. We used a mouse model combined with a standardized BRB-rich diet to investigate the impact of BRB consumption on arsenic biotransformation. We observed a significant reduction of urinary 8-oxo-2'-deoxyguanosine (8-oxodG) together with elevated levels of methylation and urinary excretion of arsenic in mice concurrently fed BRBs upon arsenic exposure. Moreover, enzyme expression and liver metabolites involved in arsenic metabolism were found to be different between mice on BRB and control diets with arsenic exposure. These data indicate that BRB consumption affected arsenic biotransformation in vivo likely via alterations in related metabolic enzymes and cofactors, providing evidence on reduction of arsenic toxicity by consumption of BRBs.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/orina , Arsenicales/metabolismo , Rubus/química , Animales , Intoxicación por Arsénico , Biotransformación , Proteínas Portadoras/metabolismo , Dieta , Glutatión Transferasa/metabolismo , Hígado/enzimología , Hígado/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Polifenoles/farmacología
9.
Chem Res Toxicol ; 32(4): 708-717, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30714728

RESUMEN

Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.


Asunto(s)
Aductos de ADN/análisis , ADN/efectos de los fármacos , Nitrosaminas/farmacología , Animales , Bovinos , Células Cultivadas , ADN/aislamiento & purificación , ADN/metabolismo , Reparación del ADN , Esterasas/metabolismo , Hígado/enzimología , Estructura Molecular , Nitrosaminas/química , Porcinos
10.
Arch Toxicol ; 93(3): 763-773, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30701286

RESUMEN

As a widespread industrial chemical, formaldehyde carcinogenicity has been highly controversial. Meanwhile, formaldehyde is an essential metabolite in all living cells. Previously, we have demonstrated exogenous formaldehyde causes DNA adducts in a nonlinear manner between 0.7 and 15.2 ppm using [13CD2]-formaldehyde for exposure coupled with the use of sensitive mass spectrometry. However, the responses from exposure to low doses of formaldehyde are still unknown. In this study, rats were exposed to 1, 30, and 300 ppb [13CD2]-formaldehyde for 28 days (6 h/day) by nose-only inhalation, followed by measuring DNA mono-adduct (N2-HOMe-dG) and DNA-protein crosslinks (dG-Me-Cys) as formaldehyde specific biomarkers. Both exogenous and endogenous DNA mono-adducts and dG-Me-Cys were examined with ultrasensitive nano-liquid chromatography-tandem mass spectrometry. Our data clearly show that endogenous adducts are present in all tissues analyzed, but exogenous adducts were not detectable in any tissue samples, including the most susceptible nasal epithelium. Moreover, formaldehyde exposure at 1, 30 and 300 ppb did not alter the levels of endogenous formaldehyde-induced DNA adducts or DNA-protein crosslinks. The novel findings from this study provide new data for risk assessment of exposure to low doses of formaldehyde.


Asunto(s)
Carcinógenos/toxicidad , Formaldehído/toxicidad , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Aductos de ADN , Relación Dosis-Respuesta a Droga , Exposición por Inhalación , Ratas , Espectrometría de Masas en Tándem , Pruebas de Toxicidad
11.
J Proteome Res ; 18(3): 1006-1018, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30628788

RESUMEN

Arsenic contamination in drinking water has been a worldwide health concern for decades. In addition to being a well-recognized carcinogen, arsenic exposure has also been linked to diabetes, neurological effects, and cardiovascular diseases. Recently, increasing evidence has indicated that gut microbiome is an important risk factor in modulating the development of diseases. We aim to investigate the role of gut microbiome perturbation in arsenic-induced diseases by coupling a mass-spectrometry-based metabolomics approach and an animal model with altered gut microbiome induced by bacterial infection. Serum metabolic profiling has revealed that gut microbiome perturbation and arsenic exposure induced the dramatic changes of numerous metabolite pathways, including fatty acid metabolism, phospholipids, sphingolipids, cholesterols, and tryptophan metabolism, which were not or were less disrupted when the gut microbiome stayed normal. In summary, this study suggests that gut microbiome perturbation can exacerbate or cause metabolic disorders induced by arsenic exposure.


Asunto(s)
Arsénico/farmacología , Microbioma Gastrointestinal/fisiología , Metabolómica/métodos , Suero/metabolismo , Animales , Infecciones Bacterianas/complicaciones , Espectrometría de Masas , Enfermedades Metabólicas/etiología , Metaboloma/efectos de los fármacos , Ratones
12.
J Biol Chem ; 294(11): 3899-3908, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30655287

RESUMEN

N-Nitroso compounds (NOCs) are common DNA-alkylating agents, are abundantly present in food and tobacco, and can also be generated endogenously. Metabolic activation of some NOCs can give rise to carboxymethylation and pyridyloxobutylation/pyridylhydroxybutylation of DNA, which are known to be carcinogenic and can lead to gastrointestinal and lung cancer, respectively. Herein, using the competitive replication and adduct bypass (CRAB) assay, along with MS- and NMR-based approaches, we assessed the cytotoxic and mutagenic properties of three O6-alkyl-2'-deoxyguanosine (O6-alkyl-dG) adducts, i.e. O6-pyridyloxobutyl-dG (O6-POB-dG) and O6-pyridylhydroxybutyl-dG (O6-PHB-dG), derived from tobacco-specific nitrosamines, and O6-carboxymethyl-dG (O6-CM-dG), induced by endogenous N-nitroso compounds. We also investigated two neutral analogs of O6-CM-dG, i.e. O6-aminocarbonylmethyl-dG (O6-ACM-dG) and O6-hydroxyethyl-dG (O6-HOEt-dG). We found that, in Escherichia coli cells, these lesions mildly (O6-POB-dG), moderately (O6-PHB-dG), or strongly (O6-CM-dG, O6-ACM-dG, and O6-HOEt-dG) impede DNA replication. The strong blockage effects of the last three lesions were attributable to the presence of hydrogen-bonding donor(s) located on the alkyl functionality of these lesions. Except for O6-POB-dG, which also induced a low frequency of G → T transversions, all other lesions exclusively stimulated G → A transitions. SOS-induced DNA polymerases played redundant roles in bypassing all the O6-alkyl-dG lesions investigated. DNA polymerase IV (Pol IV) and Pol V, however, were uniquely required for inducing the G → A transition for O6-CM-dG exposure. Together, our study expands our knowledge about the recognition of important NOC-derived O6-alkyl-dG lesions by the E. coli DNA replication machinery.


Asunto(s)
Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Bacteriano/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Compuestos Nitrosos/farmacología , ADN Bacteriano/biosíntesis , Desoxiguanosina/química , Escherichia coli/citología , Escherichia coli/metabolismo , Enlace de Hidrógeno , Estructura Molecular , Compuestos Nitrosos/química
13.
J Biol Chem ; 293(28): 11100-11108, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29789427

RESUMEN

The tobacco-derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are known human carcinogens. Following metabolic activation, NNK and NNN can induce a number of DNA lesions, including several 4-(3-pyridyl)-4-oxobut-1-yl (POB) adducts. However, it remains unclear to what extent these lesions affect the efficiency and accuracy of DNA replication and how their replicative bypass is influenced by translesion synthesis (TLS) DNA polymerases. In this study, we investigated the effects of three stable POB DNA adducts (O2-POB-dT, O4-POB-dT, and O6-POB-dG) on the efficiency and fidelity of DNA replication in HEK293T human cells. We found that, when situated in a double-stranded plasmid, O2-POB-dT and O4-POB-dT moderately blocked DNA replication and induced exclusively T→A (∼14.9%) and T→C (∼35.2%) mutations, respectively. On the other hand, O6-POB-dG slightly impeded DNA replication, and this lesion elicited primarily the G→A transition (∼75%) together with a low frequency of the G→T transversion (∼3%). By conducting replication studies in isogenic cells in which specific TLS DNA polymerases (Pols) were deleted by CRISPR-Cas9 genome editing, we observed that multiple TLS Pols, especially Pol η and Pol ζ, are involved in bypassing these lesions. Our findings reveal the cytotoxic and mutagenic properties of specific POB DNA adducts and unravel the roles of several TLS polymerases in the replicative bypass of these adducts in human cells. Together, these results provide important new knowledge about the biological consequences of POB adducts.


Asunto(s)
Carcinógenos/toxicidad , Aductos de ADN/farmacología , Replicación del ADN/efectos de los fármacos , Nicotiana/química , Nitrosaminas/química , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Células HEK293 , Humanos , Mutágenos/efectos adversos , Nitrosaminas/efectos adversos
14.
Chem Res Toxicol ; 31(5): 350-357, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29651845

RESUMEN

Genomic instability caused by DNA-protein cross-link (DPCs)-induced DNA damage is implicated in disease pathogenesis, aging, and cancer development. The covalent linkages between DNA and protein are induced by chemical reactions catalyzed by the endogenous metabolic intermediates and exogenous agents, such as aldehydes, chemotherapeutic agents, and ionizing radiation. Formaldehyde has been classified as a genotoxic carcinogen. In addition, endogenous formaldehyde-induced DPCs may increase the risks of bone marrow toxicity and leukemia. There is a need to develop an effective detection method for DPC analysis, including the structural differentiation of endogenous and exogenous formaldehyde-induced DPCs. To this end, our group previously reported a useful liquid chromatography-selected reaction monitoring (LC-SRM) approach coupled with stable isotope labeling and low mass resolution-triple quadrupole mass spectrometry. In the present work, we further demonstrate an accurate quantification method using a high-resolution, accurate-mass Orbitrap mass spectrometer for the measurement of the covalent linkage between 2'-deoxyguanosine (dG) and cysteine (Cys), specifically termed dG-Me-Cys, one kind of linkages derived from the formaldehyde-induced DPCs. This quantification method with a wide dynamic range of at least 3 orders generates an interference-free spectrum for unbiased and unambiguous quantification, resulting in good intra- and interday precisions and accuracies with less than 10% variations. The endogenous and exogenous amounts of dG-Me-Cys in a human cell line treated with formaldehyde are analyzed by our new methodology. The quantification strategy demonstrated in this study can be widely applied to characterize and quantify other DPC linkages induced by formaldehyde or other chemical agents.


Asunto(s)
Reactivos de Enlaces Cruzados/química , ADN/efectos de los fármacos , Formaldehído/farmacología , Proteínas/antagonistas & inhibidores , Cisteína/química , ADN/química , Daño del ADN , Desoxiguanosina/química , Humanos , Espectrometría de Masas , Proteínas/química
15.
Anal Chem ; 89(17): 9124-9130, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28749651

RESUMEN

Quantification of DNA lesions constitutes one of the main tasks in toxicology and in assessing health risks accompanied by exposure to carcinogens. Tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) can undergo metabolic transformation to give a reactive intermediate that pyridyloxobutylates nucleobases and phosphate backbone of DNA. Here, we reported a highly sensitive method, relying on the use of nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS), for the simultaneous quantifications of O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POBdG) as well as O2- and O4-[4-(3-pyridyl)-4-oxobut-1-yl]-thymidine (O2-POBdT and O4-POBdT). By using this method, we measured the levels of the three DNA adducts with the use of 10 µg of DNA isolated from cultured mammalian cells exposed to a model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). Our results demonstrated, for the first time, the formation of O4-POBdT in naked DNA and in genomic DNA of cultured mammalian cells exposed with NNKOAc. We also revealed that the levels of the three lesions increased with the dose of NNKOAc and that O2-POBdT and O4-POBdT could be subjected to repair by the nucleotide excision repair (NER) pathway. The method reported here will be useful for investigations about the involvement of other DNA repair pathways in the removal of these lesions and for human toxicological studies in the future.


Asunto(s)
Cromatografía Liquida/métodos , Aductos de ADN/química , Nicotiana/química , Nitrosaminas/toxicidad , Espectrometría de Masas en Tándem/métodos , Animales , Células Cultivadas , Cricetinae , Fibroblastos , Humanos , Marcaje Isotópico , Óvulo/citología , Sensibilidad y Especificidad
16.
Anal Chim Acta ; 908: 132-40, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26826695

RESUMEN

Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, l-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (l-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples.


Asunto(s)
Cromatografía Liquida/métodos , Guanidinas/análisis , Marcaje Isotópico , Espectrometría de Masa por Ionización de Electrospray/métodos , Glándula Tiroides/química , Urea/análisis
17.
J Sep Sci ; 39(5): 873-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26718016

RESUMEN

In combination with frozen pretreatment and carboxyl group derivatization, a novel workflow was developed for the determination of free fatty acids in milk powder. The workflow showed a significantly enhanced performance for comprehensive free fatty acid analysis owing to a highly efficient frozen extraction method. In addition, the advantages of the workflow also involved high sensitivity and great tolerance to a complex matrix. Characteristic fragment ions of derivatization reagents also provide clear evidence for the qualitative analysis of free fatty acids. Fourteen types of free fatty acids in a number of domestic and overseas infant milk powders have been successfully detected. The content of free fatty acids in the different samples was different, which probably indicates the diverse quality of infant milk powder. The workflow is expected to be a pragmatic tool for the analysis of free fatty acids in intricate matrices.


Asunto(s)
Ácidos Grasos no Esterificados/química , Fórmulas Infantiles/química , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Animales , Humanos , Polvos/química
18.
Anal Chim Acta ; 887: 148-154, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26320796

RESUMEN

A rapid method for fatty acids (FAs) comparative profiling based on carboxyl-specific stable isotope labeling (SIL) and direct infusion electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS) is established. The design of the method takes advantage of the three-dimensional characteristics of IM-MS including drift time, m/z and ion intensity, for comparison of d0-/d6-2,4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP)-labeled FAs. In particular, without chromatographic separation, the method allowed direct FAs profiling in complex samples due to the advantageous priority of DMPP in signal enhancement as well as the extra resolution that IM-MS offered. Additionally, the d0-/d6-DMPP-labeled FAs showed expected features, including very similar drift times, 6 Da mass deviations, specific reporter ions, similar MS responses, and adherence to the drift time rule regarding the influence of carbon chain length and unsaturation on relative drift times. Therefore, the introduction of isotope analogs minimized the matrix effect and variations in quantification and ensured accurate identification of non-targeted FAs by those typical features. Peak intensity ratios between d0-/d6-DMPP-labeled ions were subsequently used in relative quantification for the detected FAs. The established strategy has been applied successfully in the rapid profiling of trace free FAs between normal and cancerous human thyroid tissues. Sixteen free FAs were found with the increased level with a statistically significant difference (p < 0.05) compared to the normal tissue samples. The integrated SIL technique and ESI-IM-MS are expected to serve as an alternative tool for high-throughput analysis of FAs in complex samples.


Asunto(s)
Ácidos Grasos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Glándula Tiroides/patología , Neoplasias de la Tiroides/patología , Humanos , Marcaje Isotópico/métodos , Límite de Detección
19.
Anal Chim Acta ; 849: 19-26, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25300213

RESUMEN

A highly sensitive method was developed for the identification and quantification of fatty alcohols in biological tissues. In the presence of pyridine-d0 and triflic anhydride (Tf2O), fatty alcohols were converted into permanently charged N-alkylpyridinium ions. Stable isotope-labeled derivatives were generated by pyridine-d5 and added as internal standard (IS). The mixture was analyzed by liquid chromatography coupled to positive electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This method was optimized and validated in terms of reaction time, derivatization efficiency, stability, desalting, and ion suppression effect. Besides, fatty alcohols exhibited good linear relationship (r(2)>0.993) over the concentration range of 10 ngmL(-1)-1 µgmL(-1). The limits of detection (LODs) were lowered from previously reported 0.1 ngmL(-1) to 0.25 pgmL(-1). Precision (RSD%<15.6%), accuracy (93.0-107.2%), matrix effect, and recovery (in thyroid tissues) were validated as well. Finally, this method was applied for the analysis of ten even carbon-numbered fatty alcohols (C8-C24) in human thyroid carcinoma and para-carcinoma tissues, revealing a significant decrease of fatty alcohols (free and esterified) in thyroid carcinoma tissues (p<0.05).


Asunto(s)
Cromatografía Liquida/métodos , Alcoholes Grasos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Glándula Tiroides/química , Neoplasias de la Tiroides/química , Femenino , Humanos , Límite de Detección , Masculino , Compuestos de Piridinio/química , Espectrometría de Masas en Tándem/métodos
20.
J Mass Spectrom ; 48(10): 1101-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24130013

RESUMEN

RATIONALE: The illegal cooking oil has become a serious social problem and raised widespread alarm recently. However, an efficient and sensitive technique for identifying the potential illegal cooking oil is still unavailable, especially when mixed with the ordinary ones; there is an urgent need to develop an efficient method for identifying the illegal cooking oil. Sterols in the cooking oil could be used as an indicator to identify the source and quality of oil by detecting the kinds of phytosterols and zoosterols. However, those sterols are difficult to be ionized by electrospray ionization, which resulted in the low sensitivity in electrospray ionization (ESI)-mass spectrometric (MS) analysis. METHODS: N-alkylpyridinium isotope quaternization was extended to charge label sterols in different cooking oil and attached N-cationic pyridinium tag onto the sterols in the presence of trifluoromethanesulfonic anhydride (Tf2 O); the kinds of sterols were identified and quantified by comparing d0 /d5 pairs and product scan from ESI-quadrupole-time of flight (Q-TOF) MS analysis. RESULTS: The derivatized sterols were attached with permanent charge, resulting in the significant enhancement of ionization in ESI-Q-TOF MS analysis. The detection limits of analytes were improved to 0.02-0.05 ng/mL; different kinds of phytosterol, zoosterol and oxides were identified and quantified by comparing d0 /d5 pairs from full scan and product scan. The method was applied in the detection of zoosterol for identifying the potential recycled cooking oil, even when the illegal oil has been blended into the ordinary one. More zoosterol was detected in the recycled oil compared with other cooking oil. CONCLUSIONS: The use of N-alkylpyridinium isotope quaternization method provided an alternative method for identifying the potential illegal cooking oil.


Asunto(s)
Grasas Insaturadas en la Dieta/análisis , Análisis de los Alimentos/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Esteroles/análisis , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...