Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 9: 679544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136489

RESUMEN

USP16 is a histone deubiquitinase which facilitates G2/M transition during the cell cycle, regulates DNA damage repair and contributes to inducible gene expression. We mutated the USP16 gene in a high differentiation clone of the acute monocytic leukemia cell line THP-1 using the CRISPR-Cas9 system and generated four homozygous knockout clones. All were able to proliferate and to differentiate in response to phorbol ester (PMA) treatment. One line was highly proliferative prior to PMA treatment and shut down proliferation upon differentiation, like wild type. Three clones showed sustained expression of the progenitor cell marker MYB, indicating that differentiation had not completely blocked proliferation in these clones. Network analysis of transcriptomic differences among wild type, heterozygotes and homozygotes showed clusters of genes that were up- or down-regulated after differentiation in all cell lines. Prior to PMA treatment, the homozygous clones had lower levels than wild type of genes relating to metabolism and mitochondria, including SRPRB, encoding an interaction partner of USP16. There was also apparent loss of interferon signaling. In contrast, a number of genes were up-regulated in the homozygous cells compared to wild type at baseline, including other deubiquitinases (USP12, BAP1, and MYSM1). However, three homozygotes failed to fully induce USP3 during differentiation. Other network clusters showed effects prior to or after differentiation in the homozygous clones. Thus the removal of USP16 affected the transcriptome of the cells, although all these lines were able to survive, which suggests that the functions attributed to USP16 may be redundant. Our analysis indicates that the leukemic line can adapt to the extreme selection pressure applied by the loss of USP16, and the harsh conditions of the gene editing and selection protocol, through different compensatory pathways. Similar selection pressures occur during the evolution of a cancer in vivo, and our results can be seen as a case study in leukemic cell adaptation. USP16 has been considered a target for cancer chemotherapy, but our results suggest that treatment would select for escape mutants that are resistant to USP16 inhibitors.

2.
Blood Adv ; 5(3): 889-899, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33560400

RESUMEN

Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Médula Ósea , Trasplante de Médula Ósea , Diferenciación Celular
3.
Front Cell Dev Biol ; 8: 498, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719792

RESUMEN

The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1-2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.

4.
Elife ; 92020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32048991

RESUMEN

More than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II CTD by positive transcription elongation factor b (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II CTD remains unknown. In this report, we utilize mouse and human models to reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)'s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II CTD by disrupting the 7SK snRNP complex.


In animals, an enzyme known as RNA polymerase II (Pol II for short) is a key element of the transcription process, whereby the genetic information contained in DNA is turned into messenger RNA molecules in the cells, which can then be translated to proteins. To perform this task, Pol II needs to be activated by a complex of proteins called P-TEFb; however, P-TEFb is usually found in an inactive form held by another group of proteins. Yet, it is unclear how P-TEFb is released and allowed to activate Pol II. Scientists have speculated that another protein called JMJD6 (Jumonji domain-containing 6) is important for P-TEFb to activate Pol II. Various roles for JMJD6 have been proposed, but its exact purpose remains unclear. Recently, two enzymes closely related to JMJD6 were found to be able to make precise cuts in other proteins; Lee, Liu et al. therefore wanted to test whether this is also true of JMJD6. Experiments using purified JMJD6 showed that it could make a cut in an enzyme called MePCE, which belongs to the group of proteins that hold P-TEFb in its inactive form. Lee, Liu et al. then tested the relationships between these proteins in living human and mouse cells. The levels of activated Pol II were lower in cells without JMJD6 and higher in those without MePCE. Together, the results suggest that JMJD6 cuts MePCE to release P-TEFb, which then activates Pol II. JMJD6 appears to know where to cut by following a specific pattern of elements in the structure of MePCE. When MePCE was mutated so that the pattern changed, JMJD6 was unable to cut it. These results suggest that JMJD6 and related enzymes belong to a new family of proteases, the molecular scissors that can cleave other proteins. The molecules that regulate transcription often are major drug targets, for example in the fight against cancer. Ultimately, understanding the role of JMJD6 might help to identify new avenues for cancer drug development.


Asunto(s)
Metiltransferasas/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Sitios de Unión , Western Blotting , Técnicas de Inactivación de Genes , Espectrometría de Masas , Ratones , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Receptores de Superficie Celular/química
5.
Mol Genet Metab ; 127(1): 31-44, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31097364

RESUMEN

Histone demethylases remove transcriptional repressive marks from histones in the nucleus. KDM6A (also known as UTX) is a lysine demethylase which acts on the trimethylated lysine at position 27 in histone 3. The KDM6A gene is located on the X chromosome but escapes X inactivation even though it is not located in the pseudoautosomal region. There is a homologue of KDM6A on the Y chromosome, known as UTY. UTY was thought to have lost its demethylase activity and to represent a non-functional remnant of the ancestral KDM6A gene. However, results with knockout mice suggest that the gene is expressed and the protein performs some function within the cell. Female mice with homozygous deletion of Kdm6a do not survive, but hemizygous males are viable, attributed to the presence of the Uty gene. KDM6A is mutated in the human condition Kabuki syndrome type 2 (OMIM 300867) and in many cases of cancer. The amino acid sequence of KDM6A has been conserved across animal phyla, although it is only found on the X chromosome in eutherian mammals. In this review, we reanalyse existing data from various sources (protein sequence comparison, evolutionary genetics, transcription factor binding and gene expression analysis) to determine the function, expression and evolution of KDM6A and UTY and show that UTY has a functional role similar to KDM6A in metabolism and development.


Asunto(s)
Histona Demetilasas/genética , Histonas/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Inactivación del Cromosoma X/genética , Cromosoma Y/genética , Cromosoma Y/metabolismo
6.
Infect Immun ; 86(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30181348

RESUMEN

Staphylococcus pseudintermedius is the leading cause of pyoderma in dogs and is often associated with recurrent skin infections that require prolonged antibiotic therapy. High levels of antibiotic use have led to multidrug resistance, including the emergence of epidemic methicillin-resistant clones. Our understanding of the pathogenesis of S. pseudintermedius skin infection is very limited, and the identification of the key host-pathogen interactions underpinning infection could lead to the design of novel therapeutic or vaccine-based approaches for controlling disease. Here, we employ a novel murine cutaneous-infection model of S. pseudintermedius and investigate the role of the two cell wall-associated proteins (SpsD and SpsL) in skin disease pathogenesis. Experimental infection with wild-type S. pseudintermedius strain ED99 or a gene-deletion derivative deficient in expression of SpsD led to a focal accumulation of neutrophils and necrotic debris in the dermis and deeper tissues of the skin characteristic of a classical cutaneous abscess. In contrast, mice infected with mutants deficient in SpsL or both SpsD and SpsL developed larger cutaneous lesions with distinct histopathological features of regionally extensive cellulitis rather than focal abscessation. Furthermore, comparison of the bacterial loads in S. pseudintermedius-induced cutaneous lesions revealed a significantly increased burden of bacteria in the mice infected with SpsL-deficient mutants. These findings reveal a key role for SpsL in murine skin abscess formation and highlight a novel function for a bacterial surface protein in determining the clinical outcome and pathology of infection caused by a major canine pathogen.


Asunto(s)
Absceso/patología , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones Cutáneas Estafilocócicas/patología , Staphylococcus/patogenicidad , Factores de Virulencia/metabolismo , Absceso/microbiología , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Histocitoquímica , Proteínas de la Membrana/genética , Ratones , Piel/microbiología , Piel/patología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus/genética , Staphylococcus/crecimiento & desarrollo , Factores de Virulencia/genética
7.
BMC Evol Biol ; 18(1): 96, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29914368

RESUMEN

BACKGROUND: Translation of specific mRNAs can be highly regulated in different cells, tissues or under pathological conditions. Ribosome heterogeneity can originate from variable expression or post-translational modifications of ribosomal proteins. The ribosomal oxygenases RIOX1 (NO66) and RIOX2 (MINA53) modify ribosomal proteins by histidine hydroxylation. A similar mechanism is present in prokaryotes. Thus, ribosome hydroxylation may be a well-conserved regulatory mechanism with implications in disease and development. However, little is known about the evolutionary history of Riox1 and Riox2 genes and their encoded proteins across eukaryotic taxa. RESULTS: In this study, we have analysed Riox1 and Riox2 orthologous genes from 49 metazoen species and have constructed phylogenomic trees for both genes. Our genomic and phylogenetic analyses revealed that Arthropoda, Annelida, Nematoda and Mollusca lack the Riox2 gene, although in the early phylum Cnidaria both genes, Riox1 and Riox2, are present and expressed. Riox1 is an intronless single-exon-gene in several species, including humans. In contrast to Riox2, Riox1 is ubiquitously present throughout the animal kingdom suggesting that Riox1 is the phylogenetically older gene from which Riox2 has evolved. Both proteins have maintained a unique protein architecture with conservation of active sites within the JmjC domains, a dimerization domain, and a winged-helix domain. In addition, Riox1 proteins possess a unique N-terminal extension domain. Immunofluorescence analyses in Hela cells and in Hydra vulgaris identified a nucleolar localisation signal within the extended N-terminal domain of human RIOX1 and an altered subnuclear localisation for the Hydra Riox2. CONCLUSIONS: Conserved active site residues and uniform protein domain architecture suggest a consistent enzymatic activity within the Riox orthologs throughout evolution. However, differences in genomic architecture, like single exon genes and alterations in subnuclear localisation, as described for Hydra, point towards adaption mechanisms that may correlate with taxa- or species-specific requirements. The diversification of Riox1/Riox2 gene structures throughout evolution suggest that functional requirements in expression of protein isoforms and/or subcellular localisation of proteins may have evolved by adaptation to lifestyle.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Evolución Molecular , Genómica , Proteínas de Neoplasias/genética , Oxigenasas/genética , Filogenia , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Secuencia Conservada , Dioxigenasas , Células HeLa , Histona Demetilasas/química , Histona Demetilasas/genética , Humanos , Hydra , Proteínas Nucleares/química , Proteínas Nucleares/genética , Oxigenasas/química , Dominios Proteicos , Transporte de Proteínas , Ribosomas/metabolismo , Especificidad de la Especie
8.
PLoS Pathog ; 13(9): e1006461, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28880920

RESUMEN

Bacterial superantigens (SAgs) cause Vß-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vß-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis.


Asunto(s)
Enterotoxinas/metabolismo , Exfoliatinas/farmacología , Neutrófilos/efectos de los fármacos , Infecciones Estafilocócicas , Superantígenos/farmacología , Animales , Exfoliatinas/metabolismo , Humanos , Activación de Linfocitos/inmunología , Neutrófilos/inmunología , Conejos , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Superantígenos/inmunología
9.
Front Genet ; 8: 32, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360925

RESUMEN

Lysyl hydroxylation and arginyl demethylation are post-translational events that are important for many cellular processes. The jumonji domain containing protein 6 (JMJD6) has been reported to catalyze both lysyl hydroxylation and arginyl demethylation on diverse protein substrates. It also interacts directly with RNA. This review summarizes knowledge of JMJD6 functions that have emerged in the last 15 years and considers how a single Jumonji C (JmjC) domain-containing enzyme can target so many different substrates. New links and synergies between the three main proposed functions of Jmjd6 in histone demethylation, promoter proximal pause release of polymerase II and RNA splicing are discussed. The physiological context of the described molecular functions is considered and recently described novel roles for JMJD6 in cancer and immune biology are reviewed. The increased knowledge of JMJD6 functions has wider implications for our general understanding of the JmjC protein family of which JMJD6 is a member.

10.
Proc Biol Sci ; 282(1819)2015 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-26582028

RESUMEN

Resistance and tolerance are two alternative strategies hosts can adopt to survive infections. Both strategies may be genetically controlled. To date, the relative contribution of resistance and tolerance to infection outcome is poorly understood. Here, we use a bioluminescent Listeria monocytogenes (Lm) infection challenge model to study the genetic determination and dynamic contributions of host resistance and tolerance to listeriosis in four genetically diverse mouse strains. Using conventional statistical analyses, we detect significant genetic variation in both resistance and tolerance, but cannot capture the time-dependent relative importance of either host strategy. We overcome these limitations through the development of novel statistical tools to analyse individual infection trajectories portraying simultaneous changes in infection severity and health. Based on these tools, early expression of resistance followed by expression of tolerance emerge as important hallmarks for surviving Lm infections. Our trajectory analysis further reveals that survivors and non-survivors follow distinct infection paths (which are also genetically determined) and provides new survival thresholds as objective endpoints in infection experiments. Future studies may use trajectories as novel traits for mapping and identifying genes that control infection dynamics and outcome. A Matlab script for user-friendly trajectory analysis is provided.


Asunto(s)
Variación Genética , Tolerancia Inmunológica , Listeria monocytogenes/fisiología , Listeriosis/veterinaria , Ratones , Enfermedades de los Roedores/inmunología , Animales , Femenino , Listeriosis/inmunología , Listeriosis/microbiología , Ratones Endogámicos , Enfermedades de los Roedores/microbiología
11.
Genome Biol ; 14(7): R82, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23902802

RESUMEN

BACKGROUND: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. RESULTS: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. CONCLUSIONS: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.


Asunto(s)
Genoma/genética , Animales , Conducta Animal , Resistencia a la Enfermedad/inmunología , Ojo/patología , Femenino , Fémur/diagnóstico por imagen , Hipersensibilidad/inmunología , Mutación INDEL/genética , Células Asesinas Naturales/inmunología , Listeriosis/inmunología , Listeriosis/microbiología , Masculino , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Bazo/inmunología , Microtomografía por Rayos X
12.
Gut Pathog ; 5(1): 19, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23856386

RESUMEN

BACKGROUND: In vivo bioluminescence imaging (BLI) is a powerful method for the analysis of host-pathogen interactions in small animal models. The commercially available bioluminescent Listeria monocytogenes strain Xen32 is commonly used to analyse immune functions in knockout mice and pathomechanisms of listeriosis. FINDINGS: To analyse and image listerial dissemination after oral infection we have generated a murinised Xen32 strain (Xen32-mur) which expresses a previously described mouse-adapted internalin A. This strain was used alongside the Xen32 wild type strain and the bioluminescent L. monocytogenes strains EGDe-lux and murinised EGDe-mur-lux to characterise bacterial dissemination in orally inoculated BALB/cJ mice. After four days of infection, Xen32 and Xen32-mur infected mice displayed consistently higher rates of bioluminescence compared to EGDe-lux and EGDe-mur-lux infected animals. However, surprisingly both Xen32 strains showed attenuated virulence in orally infected BALB/c mice that correlated with lower bacterial burden in internal organs at day 5 post infection, smaller losses in body weights and increased survival compared to EGDe-lux or EGDe-mur-lux inoculated animals. The Xen32 strain was made bioluminescent by integration of a lux-kan transposon cassette into the listerial flaA locus. We show here that this integration results in Xen32 in a flaA frameshift mutation which makes this strain flagella deficient. CONCLUSIONS: The bioluminescent L. monocytogenes strain Xen32 is deficient in flagella expression and highly attenuated in orally infected BALB/c mice. As this listerial strain has been used in many BLI studies of murine listeriosis, it is important that the scientific community is aware of its reduced virulence in vivo.

13.
BMC Microbiol ; 13: 90, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23617550

RESUMEN

BACKGROUND: The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of 'murinisation' to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. RESULTS: The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. CONCLUSION: Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cadherinas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Listeria monocytogenes/patogenicidad , Listeriosis/patología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Traslocación Bacteriana , Barrera Hematoencefálica , Femenino , Listeria monocytogenes/genética , Listeriosis/microbiología , Ratones , Análisis Espacio-Temporal , Virulencia , Factores de Virulencia/genética , Imagen de Cuerpo Entero
14.
Cell Host Microbe ; 12(5): 645-56, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23159054

RESUMEN

Salmonella Typhimurium specifically targets antigen-sampling microfold (M) cells to translocate across the gut epithelium. Although M cells represent a small proportion of the specialized follicular-associated epithelium (FAE) overlying mucosa-associated lymphoid tissues, their density increases during Salmonella infection, but the underlying molecular mechanism remains unclear. Using in vitro and in vivo infection models, we demonstrate that the S. Typhimurium type III effector protein SopB induces an epithelial-mesenchymal transition (EMT) of FAE enterocytes into M cells. This cellular transdifferentiation is a result of SopB-dependent activation of Wnt/ß-catenin signaling leading to induction of both receptor activator of NF-κB ligand (RANKL) and its receptor RANK. The autocrine activation of RelB-expressing FAE enterocytes by RANKL/RANK induces the EMT-regulating transcription factor Slug that marks epithelial transdifferentiation into M cells. Thus, via the activity of a single secreted effector, S. Typhimurium transforms primed epithelial cells into M cells to promote host colonization and invasion.


Asunto(s)
Enterocitos/citología , Células Epiteliales/citología , Transición Epitelial-Mesenquimal , Mucosa Intestinal/microbiología , Salmonella typhimurium/patogenicidad , Aminofenoles/farmacología , Animales , Proteínas Bacterianas/metabolismo , Bencilaminas/farmacología , Diferenciación Celular , Transdiferenciación Celular , Células Cultivadas , Cromonas/farmacología , Enterocitos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Mucosa Intestinal/metabolismo , Maleimidas/farmacología , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Péptidos/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinoxalinas/farmacología , Ligando RANK/antagonistas & inhibidores , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Factores de Transcripción de la Familia Snail , Factor de Transcripción ReIB/biosíntesis , Factor de Transcripción ReIB/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Vimentina/antagonistas & inhibidores , Vimentina/biosíntesis , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(8): 3276-81, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300889

RESUMEN

JmjC domain-containing proteins play a crucial role in the control of gene expression by acting as protein hydroxylases or demethylases, thereby controlling histone methylation or splicing. Here, we demonstrate that silencing of Jumonji domain-containing protein 6 (Jmjd6) impairs angiogenic functions of endothelial cells by changing the gene expression and modulating the splicing of the VEGF-receptor 1 (Flt1). Reduction of Jmjd6 expression altered splicing of Flt1 and increased the levels of the soluble form of Flt1, which binds to VEGF and placental growth factor (PlGF) and thereby inhibits angiogenesis. Saturating VEGF or PlGF or neutralizing antibodies directed against soluble Flt1 rescued the angiogenic defects induced by Jmjd6 silencing. Jmjd6 interacts with the splicing factors U2AF65 that binds to Flt1 mRNA. In conclusion, Jmjd6 regulates the splicing of Flt1, thereby controlling angiogenic sprouting.


Asunto(s)
Endotelio Vascular/citología , Histona Demetilasas con Dominio de Jumonji/fisiología , Neovascularización Fisiológica/fisiología , Empalme del ARN , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Células Cultivadas , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Neovascularización Fisiológica/genética , Factor de Crecimiento Placentario , Proteínas Gestacionales , Procesamiento Proteico-Postraduccional , Factor A de Crecimiento Endotelial Vascular
16.
PLoS One ; 5(10): e13769, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21060799

RESUMEN

BACKGROUND: Methylation of residues in histone tails is part of a network that regulates gene expression. JmjC domain containing proteins catalyze the oxidative removal of methyl groups on histone lysine residues. Here, we report studies to test the involvement of Jumonji domain-containing protein 6 (Jmjd6) in histone lysine demethylation. Jmjd6 has recently been shown to hydroxylate RNA splicing factors and is known to be essential for the differentiation of multiple tissues and cells during embryogenesis. However, there have been conflicting reports as to whether Jmjd6 is a histone-modifying enzyme. METHODOLOGY/PRINCIPAL FINDINGS: Immunolocalization studies reveal that Jmjd6 is distributed throughout the nucleoplasm outside of regions containing heterochromatic DNA, with occasional localization in nucleoli. During mitosis, Jmjd6 is excluded from the nucleus and reappears in the telophase of the cell cycle. Western blot analyses confirmed that Jmjd6 forms homo-multimers of different molecular weights in the nucleus and cytoplasm. A comparison of mono-, di-, and tri-methylation states of H3K4, H3K9, H3K27, H3K36, and H4K20 histone residues in wildtype and Jmjd6-knockout cells indicate that Jmjd6 is not involved in the demethylation of these histone lysine residues. This is further supported by overexpression of enzymatically active and inactive forms of Jmjd6 and subsequent analysis of histone methylation patterns by immunocytochemistry and western blot analysis. Finally, treatment of cells with RNase A and DNase I indicate that Jmjd6 may preferentially associate with RNA/RNA complexes and less likely with chromatin. CONCLUSIONS/SIGNIFICANCE: Taken together, our results provide further evidence that Jmjd6 is unlikely to be involved in histone lysine demethylation. We confirmed that Jmjd6 forms multimers and showed that nuclear localization of the protein involves association with a nucleic acid matrix.


Asunto(s)
Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Western Blotting , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Técnicas de Inactivación de Genes , Histona Demetilasas con Dominio de Jumonji/genética , Metilación
17.
Science ; 325(5936): 90-3, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19574390

RESUMEN

The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton subunit (U2AF65) undergoes posttranslational lysyl-5-hydroxylation catalyzed by the Fe(II) and 2-oxoglutarate-dependent dioxygenase Jumonji domain-6 protein (Jmjd6). Jmjd6 is a nuclear protein that has an important role in vertebrate development and is a human homolog of the HIF asparaginyl-hydroxylase. Jmjd6 is shown to change alternative RNA splicing of some, but not all, of the endogenous and reporter genes, supporting a specific role for Jmjd6 in the regulation of RNA splicing.


Asunto(s)
Empalme Alternativo , Proteínas Nucleares/metabolismo , Receptores de Superficie Celular/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Línea Celular , Cromatografía Liquida , Células HeLa , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji , Lisina/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Receptores de Superficie Celular/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Factor de Empalme U2AF , Espectrometría de Masas en Tándem , Tropomiosina/genética
18.
Microbes Infect ; 10(12-13): 1379-86, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18771745

RESUMEN

We recently showed that treatment of macrophages prior to Mycobacterium tuberculosis infection with the pro-inflammatory omega-6 lipid, arachidonic acid (AA) enhanced bacterial killing whereas the anti-inflammatory, omega-3 lipid eicosapentaenoic acid (EPA) stimulated bacterial growth. Here we tested if these effects were depending on when lipids were added to macrophages: before or during Mycobacterium smegmatis or M. tuberculosis infection. Collectively, our data suggested that a high omega-6 diet might be beneficial against mycobacteriosis, while a high omega-3 diet might be detrimental. AA also stimulated TNF-alpha secretion in M. tuberculosis-infected macrophages whereas EPA inhibited this process. AA strongly activated the MAP kinase p38 in uninfected cells but M. tuberculosis infected cells blocked the ability of AA to activate p38; AA-dependent killing is therefore independent of p38. We therefore tested diets enriched in omega-3 and omega-6 lipids on a mouse model of tuberculosis. In contrast to the in vitro results, the omega-6 tended to increase survival of M. tuberculosis in mice, while omega-3- tended to increase pathogen killing. Overall our results together with those previously reported in the literature suggest that it is almost impossible to predict, at the whole organism level, if a diet enriched in omega-3 or -6 will be beneficial or detrimental to intracellular pathogens.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Interacciones Huésped-Patógeno , Macrófagos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Animales , Ácido Araquidónico/administración & dosificación , Ácido Araquidónico/farmacología , Línea Celular , Células Cultivadas , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Femenino , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/inmunología , Tuberculosis/microbiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
BMC Genomics ; 9: 293, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18564434

RESUMEN

BACKGROUND: The jumonji C (JmjC) domain containing gene 6 (Jmjd6, previously known as phosphatidylserine receptor) has misleadingly been annotated to encode a transmembrane receptor for the engulfment of apoptotic cells. Given the importance of JmjC domain containing proteins in controlling a wide range of diverse biological functions, we undertook a comparative genomic analysis to gain further insights in Jmjd6 gene organisation, evolution, and protein function. RESULTS: We describe here a semiautomated computational pipeline to identify and annotate JmjC domain containing proteins. Using a sequence segment N-terminal of the Jmjd6 JmjC domain as query for a reciprocal BLAST search, we identified homologous sequences in 62 species across all major phyla. Retrieved Jmjd6 sequences were used to phylogenetically analyse corresponding loci and their genomic neighbourhood. This analysis let to the identification and characterisation of a bi-directional transcriptional unit compromising the Jmjd6 and 1110005A03Rik genes and to the recognition of a new, before overseen Jmjd6 exon in mammals. Using expression studies, two novel Jmjd6 splice variants were identified and validated in vivo. Analysis of the Jmjd6 neighbouring gene 1110005A03Rik revealed an incident deletion of this gene in two out of three earlier reported Jmjd6 knockout mice, which might affect previously described conflicting phenotypes. To determine potentially important residues for Jmjd6 function a structural model of the Jmjd6 protein was calculated based on sequence conservation. This approach identified a conserved double-stranded beta-helix (DSBH) fold and a HxDxnH facial triad as structural motifs. Moreover, our systematic annotation in nine species identified 313 DSBH fold-containing proteins that split into 25 highly conserved subgroups. CONCLUSION: We give further evidence that Jmjd6 most likely has a function as a nonheme-Fe(II)-2-oxoglutarate-dependent dioxygenase as previously suggested. Further, we provide novel insights into the evolution of Jmjd6 and other related members of the superfamily of JmjC domain containing proteins. Finally, we discuss possibilities of the involvement of Jmjd6 and 1110005A03Rik in an antagonistic biochemical pathway.


Asunto(s)
Biología Computacional , Evolución Molecular , Genómica , Receptores de Superficie Celular/genética , Alineación de Secuencia/métodos , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Secuencia Conservada , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Etiquetas de Secuencia Expresada , Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji , Funciones de Verosimilitud , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Filogenia , Regiones Promotoras Genéticas , Isoformas de Proteínas , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad de la Especie
20.
Infect Immun ; 76(4): 1668-77, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18250172

RESUMEN

Helminths facilitate their own survival by actively modulating the immune systems of their hosts. We investigated the impacts that different life cycle stages of the rodent filaria Litomosoides sigmodontis have on the inflammatory responses of mice injected with sublethal doses of lipopolysaccharide (LPS). Mice infected with female adult worms from prepatent infections, worms which have not yet started to release microfilariae, developed lower levels of proinflammatory cytokines in the peripheral blood after LPS challenge than sham-treated controls, demonstrating that female adult worms can mitigate the innate immune response. The presence of microfilariae in mice, however, through either direct injection or implantation of microfilaria-releasing adult female worms, turned the LPS challenge fatal. This lethal outcome was characterized by increased plasma levels of gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), interleukin 12 (IL-12), and IL-6, greater numbers of macrophages and granulocytes in the peripheral blood, and decreased body temperatures in microfilaria-infected mice. Microfilaria-infected mice deficient in IFN-gamma receptor and TNF receptor 1 had increased survival rates after LPS challenge compared to immune-competent mice, suggesting that microfilariae worsen LPS-induced sepsis through actions of IFN-gamma and TNF-alpha. In summary, we have demonstrated that infection of mice with L. sigmodontis female adult worms from prepatent infections protects mice injected with LPS whereas microfilariae worsen LPS-induced sepsis through the induction of proinflammatory cytokines and upregulation of granulocytes, NK cells, and monocytes in the peripheral blood.


Asunto(s)
Filarioidea/fisiología , Lipopolisacáridos/toxicidad , Microfilarias/fisiología , Sepsis/inducido químicamente , Sepsis/parasitología , Animales , Temperatura Corporal , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Granulocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Parasitemia/metabolismo , Receptores de Interferón/genética , Receptores del Factor de Necrosis Tumoral/genética , Receptor de Interferón gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...