Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 213, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37095447

RESUMEN

BACKGROUND: Understanding the mechanisms underlining forage production and its biomass nutritive quality at the omics level is crucial for boosting the output of high-quality dry matter per unit of land. Despite the advent of multiple omics integration for the study of biological systems in major crops, investigations on forage species are still scarce. RESULTS: Our results identified substantial changes in gene co-expression and metabolite-metabolite network topologies as a result of genetic perturbation by hybridizing L. perenne with another species within the genus (L. multiflorum) relative to across genera (F. pratensis). However, conserved hub genes and hub metabolomic features were detected between pedigree classes, some of which were highly heritable and displayed one or more significant edges with agronomic traits in a weighted omics-phenotype network. In spite of tagging relevant biological molecules as, for example, the light-induced rice 1 (LIR1), hub features were not necessarily better explanatory variables for omics-assisted prediction than features stochastically sampled and all available regressors. CONCLUSIONS: The utilization of computational techniques for the reconstruction of co-expression networks facilitates the identification of key omic features that serve as central nodes and demonstrate correlation with the manifestation of observed traits. Our results also indicate a robust association between early multi-omic traits measured in a greenhouse setting and phenotypic traits evaluated under field conditions.


Asunto(s)
Oryza , Poaceae , Multiómica , Fenotipo , Metabolómica
2.
Plant Genome ; 15(4): e20255, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193572

RESUMEN

Joint modeling of correlated multienvironment and multiharvest data of perennial crop species may offer advantages in prediction schemes and a better understanding of the underlying dynamics in space and time. The goal of the present study was to investigate the relevance of incorporating the longitudinal dimension of within-season multiple measurements of forage perennial ryegrass (Lolium perenne L.) traits in a reaction-norm model setup that additionally accounts for genotype × environment (G × E) interactions. Genetic parameters and accuracy of genomic estimated breeding value (gEBV) predictions were investigated by fitting three genomic random regression models (gRRMs) using Legendre polynomial functions to the data. Genomic DNA sequencing of family pools of diploid perennial ryegrass was performed using DNA nanoball-based technology and yielded 56,645 single-nucleotide polymorphisms, which were used to calculate the allele frequency-based genomic relationship matrix. Biomass yield's estimated additive genetic variance and heritability values were higher in later harvests. The additive genetic correlations were moderate to low in early measurements and peaked at intermediates with fairly stable values across the environmental gradient except for the initial harvest data collection. This led to the conclusion that complex (G × E) arises from spatial and temporal dimensions in the early season with lower reranking trends thereafter. In general, modeling the temporal dimension with a second-order orthogonal polynomial improved the accuracy of gEBV prediction for nutritive quality traits, but no gain in prediction accuracy was detected for dry matter yield (DMY). This study leverages the flexibility and usefulness of gRRM models for perennial ryegrass breeding and can be readily extended to other multiharvest crops.


Asunto(s)
Lolium , Lolium/genética , Fitomejoramiento , Genómica , Genoma , Fenotipo
3.
Plant Genome ; 15(4): e20253, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35975565

RESUMEN

The growing demand for food and feed crops in the world because of growing population and more extreme weather events requires high-yielding and resilient crops. Many agriculturally important traits are polygenic, controlled by multiple regulatory layers, and with a strong interaction with the environment. In this study, 120 F2 families of perennial ryegrass (Lolium perenne L.) were grown across a water gradient in a semifield facility with subsoil irrigation. Genomic (single-nucleotide polymorphism [SNP]), transcriptomic (gene expression [GE]), and DNA methylomic (MET) data were integrated with feed quality trait data collected from control and drought sections in the semifield facility, providing a treatment effect. Deep root length (DRL) below 110 cm was assessed with convolutional neural network image analysis. Bayesian prediction models were used to partition phenotypic variance into its components and evaluated the proportion of phenotypic variance in all traits captured by different regulatory layers (SNP, GE, and MET). The spatial effects and effects of SNP, GE, MET, the interaction between GE and MET (GE × MET) and GE × treatment (GEControl and GEDrought ) interaction were investigated. Gene expression explained a substantial part of the genetic and spatial variance for all the investigated phenotypes, whereas MET explained residual variance not accounted for by SNPs or GE. For DRL, MET also contributed to explaining spatial variance. The study provides a statistically elegant analytical paradigm that integrates genomic, transcriptomic, and MET information to understand the regulatory mechanisms of polygenic effects for complex traits.


Asunto(s)
Lolium , Lolium/genética , Herencia Multifactorial , Metilación de ADN , Teorema de Bayes , Genotipo , Transcriptoma
5.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974727

RESUMEN

Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.


Asunto(s)
Brachypodium/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Proteínas de Plantas/biosíntesis , Estrés Fisiológico , Brachypodium/genética , Pared Celular/genética , Deshidratación/genética , Deshidratación/metabolismo , Proteínas de Plantas/genética
6.
Front Plant Sci ; 9: 1165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30158944

RESUMEN

Perennial ryegrass is an outbreeding forage species and is one of the most widely used forage grasses in temperate regions. The aim of this study was to investigate the possibility of implementing genomic prediction in tetraploid perennial ryegrass, to study the effects of different sequencing depth when using genotyping-by-sequencing (GBS), and to determine optimal number of single-nucleotide polymorphism (SNP) markers and sequencing depth for GBS data when applied in tetraploids. A total of 1,515 F2 tetraploid ryegrass families were included in the study and phenotypes and genotypes were scored on family-pools. The traits considered were dry matter yield (DM), rust resistance (RUST), and heading date (HD). The genomic information was obtained in the form of allele frequencies of pooled family samples using GBS. Different SNP filtering strategies were designed. The strategies included filtering out SNPs having low average depth (FILTLOW), having high average depth (FILTHIGH), and having both low average and high average depth (FILTBOTH). In addition, SNPs were kept randomly with different data sizes (RAN). The accuracy of genomic prediction was evaluated by using a "leave single F2 family out" cross validation scheme, and the predictive ability and bias were assessed by correlating phenotypes corrected for fixed effects with predicted additive breeding values. Among all the filtering scenarios, the highest estimates for genomic heritability of family means were 0.45, 0.74, and 0.73 for DM, HD and RUST, respectively. The predictive ability generally increased as the number of SNPs included in the analysis increased. The highest predictive ability for DM was 0.34 (137,191 SNPs having average depth higher than 10), for HD was 0.77 (185,297 SNPs having average depth lower than 60), and for RUST was 0.55 (188,832 SNPs having average depth higher than 1). Genomic prediction can help to optimize the breeding of tetraploid ryegrass. GBS data including about 80-100 K SNPs are needed for accurate prediction of additive breeding values in tetraploid ryegrass. Using only SNPs with sequencing depth between 10 and 20 gave highest predictive ability, and showed the potential to obtain accurate prediction from medium-low coverage GBS in tetraploids.

7.
Front Plant Sci ; 9: 369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619038

RESUMEN

Ryegrass single plants, bi-parental family pools, and multi-parental family pools are often genotyped, based on allele-frequencies using genotyping-by-sequencing (GBS) assays. GBS assays can be performed at low-coverage depth to reduce costs. However, reducing the coverage depth leads to a higher proportion of missing data, and leads to a reduction in accuracy when identifying the allele-frequency at each locus. As a consequence of the latter, genomic relationship matrices (GRMs) will be biased. This bias in GRMs affects variance estimates and the accuracy of GBLUP for genomic prediction (GBLUP-GP). We derived equations that describe the bias from low-coverage sequencing as an effect of binomial sampling of sequence reads, and allowed for any ploidy level of the sample considered. This allowed us to combine individual and pool genotypes in one GRM, treating pool-genotypes as a polyploid genotype, equal to the total ploidy-level of the parents of the pool. Using simulated data, we verified the magnitude of the GRM bias at different coverage depths for three different kinds of ryegrass breeding material: individual genotypes from single plants, pool-genotypes from F2 families, and pool-genotypes from synthetic varieties. To better handle missing data, we also tested imputation procedures, which are suited for analyzing allele-frequency genomic data. The relative advantages of the bias-correction and the imputation of missing data were evaluated using real data. We examined a large dataset, including single plants, F2 families, and synthetic varieties genotyped in three GBS assays, each with a different coverage depth, and evaluated them for heading date, crown rust resistance, and seed yield. Cross validations were used to test the accuracy using GBLUP approaches, demonstrating the feasibility of predicting among different breeding material. Bias-corrected GRMs proved to increase predictive accuracies when compared with standard approaches to construct GRMs. Among the imputation methods we tested, the random forest method yielded the highest predictive accuracy. The combinations of these two methods resulted in a meaningful increase of predictive ability (up to 0.09). The possibility of predicting across individuals and pools provides new opportunities for improving ryegrass breeding schemes.

8.
Front Plant Sci ; 8: 1199, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769939

RESUMEN

Silicon (Si) is taken up from the soil as monosilicic acid by plant roots, transported to leaves and deposited as phytoliths, amorphous silica (SiO2) bodies, which are a key component of anti-herbivore defense in grasses. Silicon transporters have been identified in many plant species, but the mechanisms underpinning Si transport remain poorly understood. Specifically, the extent to which Si uptake is a passive process, driven primarily by transpiration, or has both passive and active components remains disputed. Increases in foliar Si concentration following herbivory suggest plants may exercise some control over Si uptake and distribution. In order to investigate passive and active controls on Si accumulation, we examined both genetic and environmental influences on Si accumulation in the forage grass Festuca arundinacea. We studied three F. arundinacea varieties that differ in the levels of Si they accumulate. Varieties not only differed in Si concentration, but also in increases in Si accumulation in response to leaf damage. The varietal differences in Si concentration generally reflected differences in stomatal density and stomatal conductance, suggesting passive, transpiration-mediated mechanisms underpin these differences. Bagging plants after damage was employed to minimize differences in stomatal conductance between varieties and in response to damage. This treatment eliminated constitutive differences in leaf Si levels, but did not impair the damage-induced increases in Si uptake: damaged, bagged plants still had more leaf Si than undamaged, bagged plants in all three varieties. Preliminary differential gene expression analysis revealed that the active Si transporter Lsi2 was highly expressed in damaged unbagged plants compared with undamaged unbagged plants, suggesting damage-induced Si defenses are regulated at gene level. Our findings suggest that although differences in transpiration may be partially responsible for varietal differences in Si uptake, they cannot explain damage-induced increases in Si uptake and deposition, suggesting that wounding causes changes in Si uptake, distribution and deposition that likely involve active processes and changes in gene expression.

9.
Plant Genome ; 9(3)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27902790

RESUMEN

The implementation of genomic selection (GS) in plant breeding, so far, has been mainly evaluated in crops farmed as homogeneous varieties, and the results have been generally positive. Fewer results are available for species, such as forage grasses, that are grown as heterogenous families (developed from multiparent crosses) in which the control of the genetic variation is far more complex. Here we test the potential for implementing GS in the breeding of perennial ryegrass ( L.) using empirical data from a commercial forage breeding program. Biparental F and multiparental synthetic (SYN) families of diploid perennial ryegrass were genotyped using genotyping-by-sequencing, and phenotypes for five different traits were analyzed. Genotypes were expressed as family allele frequencies, and phenotypes were recorded as family means. Different models for genomic prediction were compared by using practically relevant cross-validation strategies. All traits showed a highly significant level of genetic variance, which could be traced using the genotyping assay. While there was significant genotype × environment (G × E) interaction for some traits, accuracies were high among F families and between biparental F and multiparental SYN families. We have demonstrated that the implementation of GS in grass breeding is now possible and presents an opportunity to make significant gains for various traits.


Asunto(s)
Genoma de Planta/genética , Lolium/genética , Modelos Genéticos , Fitomejoramiento , Genómica , Genotipo , Fenotipo
10.
Theor Appl Genet ; 129(1): 45-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26407618

RESUMEN

KEYMESSAGE: By using the genotyping-by-sequencing method, it is feasible to characterize genomic relationships directly at the level of family pools and to estimate genomic heritabilities from phenotypes scored on family-pools in outbreeding species. Genotyping-by-sequencing (GBS) has recently become a promising approach for characterizing plant genetic diversity on a genome-wide scale. We use GBS to extend the concept of heritability beyond individuals by genotyping family-pool samples by GBS and computing genomic relationship matrices (GRMs) and genomic heritabilities directly at the level of family-pools from pool-frequencies obtained by sequencing. The concept is of interest for species where breeding and phenotyping is not done at the individual level but operates uniquely at the level of (multi-parent) families. As an example we demonstrate the approach using a set of 990 two-parent F2 families of perennial ryegrass (Lolium Perenne). The families were phenotyped as a family-unit in field plots for heading date and crown rust resistance. A total of 728 K single nucleotide polymorphism (SNP) variants were available and were divided in groups of different sequencing depths. GRMs based on GBS data showed diagonal values biased upwards at low sequencing depth, while off-diagonals were little affected by the sequencing depth. Using variants with high sequencing depth, genomic heritability for crown rust resistance was 0.33, and for heading date 0.22, and these genomic heritabilities were biased downwards when using variants with lower sequencing depth. Broad sense heritabilities were 0.61 and 0.66, respectively. Underestimation of genomic heritability at lower sequencing depth was confirmed with simulated data. We conclude that it is feasible to use GBS to describe relationships between family-pools and to estimate genomic heritability directly at the level of F2 family-pool samples, but estimates are biased at low sequencing depth.


Asunto(s)
Pool de Genes , Genoma de Planta , Genómica/métodos , Lolium/genética , Resistencia a la Enfermedad/genética , Frecuencia de los Genes , Biblioteca de Genes , Técnicas de Genotipaje/métodos , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN/métodos
11.
BMC Genomics ; 16: 921, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26559662

RESUMEN

BACKGROUND: Genomic selection (GS) has become a commonly used technology in animal breeding. In crops, it is expected to significantly improve the genetic gains per unit of time. So far, its implementation in plant breeding has been mainly investigated in species farmed as homogeneous varieties. Concerning crops farmed in family pools, only a few theoretical studies are currently available. Here, we test the opportunity to implement GS in breeding of perennial ryegrass, using real data from a forage breeding program. Heading date was chosen as a model trait, due to its high heritability and ease of assessment. Genome Wide Association analysis was performed to uncover the genetic architecture of the trait. Then, Genomic Prediction (GP) models were tested and prediction accuracy was compared to the one obtained in traditional Marker Assisted Selection (MAS) methods. RESULTS: Several markers were significantly associated with heading date, some locating within or proximal to genes with a well-established role in floral regulation. GP models gave very high accuracies, which were significantly better than those obtained through traditional MAS. Accuracies were higher when predictions were made from related families and from larger training populations, whereas predicting from unrelated families caused the variance of the estimated breeding values to be biased downwards. CONCLUSIONS: We have demonstrated that there are good perspectives for GS implementation in perennial ryegrass breeding, and that problems resulting from low linkage disequilibrium (LD) can be reduced by the presence of structure and related families in the breeding population. While comprehensive Genome Wide Association analysis is difficult in species with extremely low LD, we did identify variants proximal to genes with a known role in flowering time (e.g. CONSTANS and Phytochrome C).


Asunto(s)
Genoma de Planta , Genómica , Lolium/genética , Carácter Cuantitativo Heredable , Cruzamiento , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica/métodos , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Selección Genética
12.
Mol Genet Genomics ; 286(5-6): 433-47, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22081040

RESUMEN

Vernalization, a period of low temperature to induce transition from vegetative to reproductive state, is an important environmental stimulus for many cool season grasses. A key gene in the vernalization pathway in grasses is the VRN1 gene. The objective of this study was to identify causative polymorphism(s) at the VRN1 locus in perennial ryegrass (Lolium perenne) for variation in vernalization requirement. Two allelic Bacterial Artificial Chromosome clones of the VRN1 locus from the two genotypes Veyo and Falster with contrasting vernalization requirements were identified, sequenced, and characterized. Analysis of the allelic sequences identified an 8.6-kb deletion in the first intron of the VRN1 gene in the Veyo genotype which has low vernalization requirement. This deletion was in a divergent recurrent selection experiment confirmed to be associated with genotypes with low vernalization requirement. The region surrounding the VRN1 locus in perennial ryegrass showed microcolinearity to the corresponding region on chromosome 3 in Oryza sativa with conserved gene order and orientation, while the micro-colinearity to the corresponding region in Triticum monococcum was less conserved. Our study indicates that the first intron of the VRN1 gene, and in particular the identified 8.6 kb region, is an important regulatory region for vernalization response in perennial ryegrass.


Asunto(s)
Lolium/genética , Proteínas Represoras/genética , Análisis de Secuencia , Alelos , Secuencia de Bases , Genes de Plantas , Hordeum/genética , Datos de Secuencia Molecular , Oryza/genética , Triticum/genética
13.
Plant Sci ; 181(4): 412-20, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21889047

RESUMEN

Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent of linkage disequilibrium (LD) within European elite germplasm and to evaluate the appropriate methodology for genetic association mapping in perennial ryegrass. A high level of genetic diversity was observed in a set of 380 perennial ryegrass elite genotypes when genotyped with 40 SSRs and 2 STS markers. A Bayesian structure analysis identified two subpopulations, which were confirmed by principal coordinate analysis (PCoA). One subpopulation consisted mainly of genotypes originating from the UK, while germplasm mostly from Continental Europe was grouped into the second subpopulation. LD (r(2)) decay was rapid and occurred within 0.4cM across European varieties, when population structure was taken into consideration. However, an extended LD of up to 6.6cM was detected within the variety Aberdart. High genetic diversity and rapid LD decay provide means for high resolution association mapping in elite materials of perennial ryegrass. However, different strategies need to be applied depending on the material used. Genome-wide association study (GWAS) with several hundred markers can be applied within synthetic varieties to identify large (up to 10cM) genomic regions affecting trait variation. A combination of available and novel DNA markers is needed to achieve resolution required for GWAS in elite breeding materials. An even higher marker density of several million SNPs might be needed for GWAS in diverse ecotype collections, potentially resulting in quantitative trait polymorphism (QTP) identification.


Asunto(s)
Variación Genética , Desequilibrio de Ligamiento/genética , Lolium/genética , Semillas/genética , Mapeo Cromosómico , Europa (Continente) , Marcadores Genéticos/genética , Genotipo , Repeticiones de Microsatélite/genética , Dinámica Poblacional , Análisis de Componente Principal
14.
Plant Sci ; 180(2): 228-37, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21421365

RESUMEN

Optimization of flowering is an important breeding goal in forage and turf grasses, such as perennial ryegrass (Lolium perenne L.). Nine floral control genes including Lolium perenne CONSTANS (LpCO), SISTER OF FLOWERING LOCUS T (LpSFT), TERMINAL FLOWER1 (LpTFL1), VERNALIZATION1 (LpVRN1, identical to LpMADS1) and five additional MADS-box genes, were analyzed for nucleotide diversity and linkage disequilibrium (LD). For each gene, about 1 kb genomic fragments were isolated from 10 to 20 genotypes of perennial ryegrass of diverse origin. Four to twelve haplotypes per gene were observed. On average, one single nucleotide polymorphism (SNP) was present per 127 bp between two randomly sampled sequences for the nine genes (π = 0.00790). Two MADS-box genes, LpMADS1 and LpMADS10, involved in timing of flowering showed high nucleotide diversity and rapid LD decay, whereas MADS-box genes involved in floral organ identity were found to be highly conserved and showed extended LD. For LpMADS4, LpMADS5, LpCO, LpSFT and LpTFL1, LD extended over the entire region analyzed. The results are compared to previously published results on resistance genes within the same collection of genotypes and the prospects for association mapping of floral control in perennial ryegrass are discussed.


Asunto(s)
Genes de Plantas , Desequilibrio de Ligamiento/genética , Lolium/genética , Proteínas de Dominio MADS/genética , Polimorfismo Genético/genética , Alelos , Mapeo Cromosómico , Flores/genética , Flores/fisiología , Haplotipos/genética , Heterocigoto , Desequilibrio de Ligamiento/fisiología , Lolium/fisiología , Proteínas de Dominio MADS/fisiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Polimorfismo Genético/fisiología , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Selección Genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Tiempo
15.
Plant Cell Rep ; 27(10): 1601-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18648817

RESUMEN

Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.


Asunto(s)
Biolística , Festuca/genética , Festuca/microbiología , Rhizobium/metabolismo , Transformación Genética , Southern Blotting , ADN de Plantas/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos/genética , Plantas Modificadas Genéticamente , Selección Genética , Técnicas de Cultivo de Tejidos , Transgenes
16.
Transgenic Res ; 17(5): 965-75, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18064538

RESUMEN

In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA, while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.


Asunto(s)
Modelos Genéticos , Poaceae/genética , Rhizobium/fisiología , Transformación Genética , Southern Blotting , Genes de Plantas , Transgenes
17.
Plant Mol Biol ; 55(2): 153-64, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15604672

RESUMEN

Activation sequence-1 (as-1)-like regulatory cis elements mediate transcriptional activation in response to increased levels of plant signalling molecules auxin and salicylic acid (SA). Our earlier work has shown that tobacco cellular as-1-binding complex SARP (salicylic acid responsive protein) is primarily comprised of bZIP protein TGA2.2 and of minor amounts of a protein that cross-reacts with an antibody directed against related bZIP factor TGA2.1. As this protein was significantly smaller than recombinant TGA2.1, the origin of this protein had remained unresolved. Here we demonstrate that it corresponds to a distinct cleavage product of TGA2.1 generated during extract preparation. Overexpression of TGA2.1 led to increased levels of the TGA2.1/TGA2.2 heterodimer which was as effective with regard to enhancing the SA-inducibility of as-1 containing target gene Nt103 as corresponding amounts of the TGA2.2 homodimer. Thus, the TGA2.1 specific N-terminal domain, which had revealed transcriptional activation potential in yeast, did not show enhanced transcriptional activation in planta. TGA2.1 even had a negative effect on the SA-induced expression of the truncated CaMV 35S (-90) promoter that contains an isolated as-1-element upstream of the TATA-box. Plants expressing a TGA mutant deficient in DNA binding (TGA2.1trd) showed reduced levels of SA-inducible Nt103 expression, thus resembling plants expressing the analogous TGA2.2 derivative TGA2.2trd. In contrast to TGA2.2trd, TGA2.1trd did not reduce auxin-induced expression of Nt103 and SA-induced expression of pathogenesis related protein PR-1a, indicating that TGA2.1trd and TGA2.2trd differ in their capacity to outcompete regulatory factors involved in these regulatory pathways.


Asunto(s)
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión/genética , Northern Blotting , Western Blotting , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , ARN de Planta/genética , ARN de Planta/metabolismo , Ácido Salicílico/farmacología , Nicotiana/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...