Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39146201

RESUMEN

STUDY DESIGN: Retrospective analysis of prospectively collected data. OBJECTIVE: Evaluate the impact of prior cervical constructs on upper instrumented vertebrae (UIV) selection and postoperative outcomes among patients undergoing thoracolumbar deformity correction. BACKGROUND: Surgical planning for adult spinal deformity (ASD) patients involves consideration of spinal alignment and existing fusion constructs. METHODS: ASD patients with (ANTERIOR or POSTERIOR) and without (NONE) prior cervical fusion who underwent thoracolumbar fusion were included. Demographics, radiographic alignment, patient-reported outcome measures (PROMs), and complications were compared. Univariate and multivariate analyses were performed on POSTERIOR patients to identify parameters predictive of UIV choice and to evaluate postoperative outcomes impacted by UIV selection. RESULTS: Among 542 patients, with 446 NONE, 72 ANTERIOR, and 24 POSTERIOR patients, mean age was 64.4 years and 432 (80%) were female. Cervical fusion patients had worse preoperative cervical and lumbosacral deformity, and PROMs (P<0.05). In the POSTERIOR cohort, preoperative LIV was frequently below the cervicothoracic junction (54%) and uncommonly (13%) connected to the thoracolumbar UIV. Multivariate analyses revealed that higher preoperative cervical SVA (coeff=-0.22, 95%CI=-0.43--0.01, P=0.038) and C2SPi (coeff=-0.72, 95%CI=-1.36--0.07, P=0.031), and lower preoperative thoracic kyphosis (coeff=0.14, 95%CI=0.01-0.28, P=0.040) and thoracolumbar lordosis (coeff=0.22, 95%CI=0.10-0.33, P=0.001) were predictive of cranial UIV. Two-year postoperatively, cervical patients continued to have worse cervical deformity and PROMs (P<0.05) but had comparable postoperative complications. Choice of thoracolumbar UIV below or above T6, as well as the number of unfused levels between constructs, did not affect patient outcomes. CONCLUSIONS: Among patients who underwent thoracolumbar deformity correction, prior cervical fusion was associated with more severe spinopelvic deformity and PROMs preoperatively. The choice of thoracolumbar UIV was strongly predicted by their baseline cervical and thoracolumbar alignment. Despite their poor preoperative condition, these patients still experienced significant improvements in their thoracolumbar alignment and PROMs after surgery, irrespective of UIV selection. LEVEL OF EVIDENCE: IV.

2.
Spinal Cord Ser Cases ; 10(1): 59, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153987

RESUMEN

STUDY DESIGN: Clinical case series. OBJECTIVE: To describe the cause, treatment and outcome of 6 cases of perioperative spinal cord injury (SCI) in high-risk adult deformity surgery. SETTING: Adult spinal deformity patients were enrolled in the multi-center Scoli-RISK-1 cohort study. METHODS: A total of 272 patients who underwent complex adult deformity surgery were enrolled in the prospective, multi-center Scoli-RISK-1 cohort study. Clinical follow up data were available up to a maximum of 2 years after index surgery. Cases of perioperative SCI were identified and an extensive case review was performed. RESULTS: Six individuals with SCI were identified from the Scoli-RISK-1 database (2.2%). Two cases occurred intraoperatively and four cases occurred postoperatively. The first case was an incomplete SCI due to a direct intraoperative insult and was treated postoperatively with Riluzole. The second SCI case was caused by a compression injury due to overcorrection of the deformity. Three cases of incomplete SCI occurred; one case of postoperative hematoma, one case of proximal junctional kyphosis (PJK) and one case of adjacent segment disc herniation. All cases of post-operative incomplete SCI were managed with revision decompression and resulted in excellent clinical recovery. One case of incomplete SCI resulted from infection and PJK. The patient's treatment was complicated by a delay in revision and the patient suffered persistent neurological deficits up to six weeks following the onset of SCI. CONCLUSION: Despite the low incidence in high-risk adult deformity surgeries, perioperative SCI can result in devastating consequences. Thus, appropriate postoperative care, follow up and timely management of SCI are essential.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/epidemiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/cirugía , Masculino , Femenino , Persona de Mediana Edad , Adulto , Incidencia , Complicaciones Posoperatorias/epidemiología , Anciano , Resultado del Tratamiento , Estudios de Cohortes , Estudios Prospectivos
3.
Spine Deform ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117941

RESUMEN

PURPOSE: To determine if an improvement in cord-level intraoperative neuromonitoring (IONM) data following data loss results in a reduced risk for new postoperative motor deficit in pediatric and adult spinal deformity surgery. METHODS: A consecutive series of 1106 patients underwent spine surgery from 2015 to 2023 by a single surgeon. Cord alerts were defined by Somatosensory-Evoked Potentials (SSEP; warning criteria: 10% increase in latency or > 50% loss in amplitude) and Motor-Evoked Potentials (MEP; warning criteria: 75% loss in amplitude without return to acceptable limits after stimulation up 100 V above baseline level). Timing of IONM loss and recovery, interventions, and baseline/postoperative day 1 (POD1) lower extremity motor scores were analyzed. RESULTS: IONM Cord loss was noted in 4.8% (53/11,06) of patients and 34% (18/53) with cord alerts had a POD1 deficit compared to preoperative motor exam. MEP and SSEP loss attributed to 98.1% (52/53) and 39.6% (21/53) of cord alerts, respectively. Abnormal descending neurogenic-evoked potential (DNEP) was seen in 85.7% (12/14) and detected 91.7% (11/12) with POD1 deficit. Abnormal wake-up test (WUT) was seen in 38.5% (5/13) and detected 100% (5/5) with POD1 deficit. Most cord alerts occurred during a three-column osteotomy (N = 23/53, 43%); decompression (N = 12), compression (N = 7), exposure (N = 4), and rod placement (N = 14). Interventions were performed in all 53 patients with cord loss and included removing rods/less correction (N = 11), increasing mean arterial pressure alone (N = 10), and further decompression with three-column osteotomy (N = 9). After intervention, IONM data improved in 45(84.9%) patients (Full improvement: N = 28; Partial improvement: 17). For those with full and partial IONM improvement, the POD1 deficit was 10.7% (3/28) and 41.2% (7/17), respectively. For those without any IONM improvement (15.1%, 8/53), 100% (8/8) had a POD1 deficit, P < 0.001. CONCLUSION: A full or partial improvement in IONM data loss after intraoperative intervention was significantly associated with a lower risk for POD1 deficit with an absolute risk reduction of 89.3% and 58.8%, respectively. All patients without IONM improvement had a POD1 neurologic deficit.

4.
Spine Deform ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162958

RESUMEN

PURPOSE: To assess and compare coronal alignment correction at 2 year follow-up in adult spinal deformity (ASD) patients treated with and without the kickstand rod (KSR) construct. METHODS: ASD patients who underwent posterior spinal fusion at a single-center with a preoperative coronal vertical axis (CVA) ≥ 3 cm and a minimum of 2 year clinical and radiographic follow-up were identified. Patients were divided into two groups: those treated with a KSR and those who were not. Patients were propensity score-matched (PSM) controlling for preoperative CVA and instrumented levels to limit potential biases that my influence the magnitude of coronal correction. RESULTS: One hundred sixteen patients were identified (KSR = 42, Control = 74). There were no statistically significant differences in patient characteristics (p > 0.05). At baseline, the control group presented with a greater LS curve (29.0 ± 19.6 vs. 21.5 ± 10.8, p = 0.0191) while the KSR group presented with a greater CVA (6.3 ± 3.6 vs. 4.5 ± 1.8, p = 0.0036). After 40 PSM pairs were generated, there were no statistically significant differences in baseline patient and radiographic characteristics. Within the matched cohorts, the KSR group demonstrated greater CVA correction at 1 year (4.7 ± 2.4 cm vs. 2.9 ± 2.2 cm, p = 0.0012) and 2 year follow-up (4.7 ± 2.6 cm vs. 3.1 ± 2.6 cm, p = 0.0020) resulting in less coronal malalignment one (1.5 ± 1.3 cm vs. 2.4 ± 1.6 cm, p = 0.0056) and 2 year follow-up (1.6 ± 1.0 vs. 2.5 ± 1.5 cm, p = 0.0110). No statistically significant differences in PROMs, asymptomatic mechanical complications, reoperations for non-mechanical complications were observed at 2 year follow-up. However, the KSR group experienced a lesser rate of mechanical complications requiring reoperations (7.1% vs. 24.3%. OR = 0.15 [0.03-0.72], p = 0.0174). CONCLUSIONS: Patients treated with a KSR had a greater amount of coronal realignment at the 2 year follow-up time period and reported less mechanical complications requiring reoperation. However, 2 year patient-reported outcomes were similar between the two groups.

5.
J Bone Joint Surg Am ; 106(13): 1171-1180, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958659

RESUMEN

BACKGROUND: Hip osteoarthritis (OA) is common in patients with adult spinal deformity (ASD). Limited data exist on the prevalence of hip OA in patients with ASD, or on its impact on baseline and postoperative alignment and patient-reported outcome measures (PROMs). Therefore, this paper will assess the prevalence and impact of hip OA on alignment and PROMs. METHODS: Patients with ASD who underwent L1-pelvis or longer fusions were included. Two independent reviewers graded hip OA with the Kellgren-Lawrence (KL) classification and stratified it by severity into non-severe (KL grade 1 or 2) and severe (KL grade 3 or 4). Radiographic parameters and PROMs were compared among 3 patient groups: Hip-Spine (hip KL grade 3 or 4 bilaterally), Unilateral (UL)-Hip (hip KL grade 3 or 4 unilaterally), or Spine (hip KL grade 1 or 2 bilaterally). RESULTS: Of 520 patients with ASD who met inclusion criteria for an OA prevalence analysis, 34% (177 of 520) had severe bilateral hip OA and unilateral or bilateral hip arthroplasty had been performed in 8.7% (45 of 520). A subset of 165 patients had all data components and were examined: 68 Hip-Spine, 32 UL-Hip, and 65 Spine. Hip-Spine patients were older (67.9 ± 9.5 years, versus 59.6 ± 10.1 years for Spine and 65.8 ± 7.5 years for UL-Hip; p < 0.001) and had a higher frailty index (4.3 ± 2.6, versus 2.7 ± 2.0 for UL-Hip and 2.9 ± 2.0 for Spine; p < 0.001). At 1 year, the groups had similar lumbar lordosis, yet the Hip-Spine patients had a worse sagittal vertebral axis (SVA) measurement (45.9 ± 45.5 mm, versus 25.1 ± 37.1 mm for UL-Hip and 19.0 ± 39.3 mm for Spine; p = 0.001). Hip-Spine patients also had worse Veterans RAND-12 Physical Component Summary scores at baseline (25.7 ± 9.3, versus 28.7 ± 9.8 for UL-Hip and 31.3 ± 10.5 for Spine; p = 0.005) and 1 year postoperatively (34.5 ± 11.4, versus 40.3 ± 10.4 for UL-Hip and 40.1 ± 10.9 for Spine; p = 0.006). CONCLUSIONS: This study of operatively treated ASD revealed that 1 in 3 patients had severe hip OA bilaterally. Such patients with severe bilateral hip OA had worse baseline SVA and PROMs that persisted 1 year following ASD surgery, despite correction of lordosis. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Asunto(s)
Osteoartritis de la Cadera , Medición de Resultados Informados por el Paciente , Fusión Vertebral , Humanos , Osteoartritis de la Cadera/cirugía , Osteoartritis de la Cadera/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Prevalencia , Anciano , Fusión Vertebral/efectos adversos , Resultado del Tratamiento , Curvaturas de la Columna Vertebral/cirugía , Curvaturas de la Columna Vertebral/epidemiología , Curvaturas de la Columna Vertebral/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Artroplastia de Reemplazo de Cadera/estadística & datos numéricos , Estudios Retrospectivos , Adulto
6.
Eur Spine J ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068280

RESUMEN

PURPOSE: Previous work comparing ASD to a normative population demonstrated that a large proportion of lumbar lordosis is lost proximally (L1-L4). The current study expands on these findings by collectively investigating regional angles and spinal contours. METHODS: 119 asymptomatic volunteers with full-body free-standing radiographs were used to identify age-and-PI models of each Vertebra Pelvic Angle (VPA) from L5 to T10. These formulas were then applied to a cohort of primary surgical ASD patients without coronal malalignment. Loss of lumbar lordosis (LL) was defined as the offset between age-and-PI normative value and pre-operative alignment. Spine shapes defined by VPAs were compared and analyzed using paired t-tests. RESULTS: 362 ASD patients were identified (age = 64.4 ± 13, 57.1% females). Compared to their age-and-PI normative values, patients demonstrated a significant loss in LL of 17 ± 19° in the following distribution: 14.1% had "No loss" (mean = 0.1 ± 2.3), 22.9% with 10°-loss (mean = 9.9 ± 2.9), 22.1% with 20°-loss (mean = 20.0 ± 2.8), and 29.3% with 30°-loss (mean = 33.8 ± 6.0). "No loss" patients' spine was slightly posterior to the normative shape from L4 to T10 (VPA difference of 2°), while superimposed on the normative one from S1 to L2 and became anterior at L1 in the "10°-loss" group. As LL loss increased, ASD and normative shapes offset extended caudally to L3 for the "20°-loss" group and L4 for the "30°-loss" group. CONCLUSION: As LL loss increases, the difference between ASD and normative shapes first occurs proximally and then progresses incrementally caudally. Understanding spinal contour and LL loss location may be key to achieving sustainable correction by identifying optimal and personalized postoperative shapes.

7.
Global Spine J ; : 21925682241261662, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832400

RESUMEN

STUDY DESIGN: Prospective multicenter database post-hoc analysis. OBJECTIVES: Opioids are frequently prescribed for painful spinal conditions to provide pain relief and to allow for functional improvement, both before and after spine surgery. Amidst a current opioid epidemic, it is important for providers to understand the impact of opioid use and its relationship with patient-reported outcomes. The purpose of this study was to evaluate pre-/postoperative opioid consumption surrounding ASD and assess patient-reported pain outcomes in older patients undergoing surgery for spinal deformity. METHODS: Patients ≥60 years of age from 12 international centers undergoing spinal fusion of at least 5 levels and a minimum 2-year follow-up were included. Patient-reported outcome scores were collected using the Numeric Rating Scale for back and leg pain (NRS-B; NRS-L) at baseline and at 2 years following surgery. Opioid use, defined based on a specific question on case report forms and question 11 from the SRS-22r questionnaire, was assessed at baseline and at 2-year follow-up. RESULT: Of the 219 patients who met inclusion criteria, 179 (81.7%) had 2-year data on opioid use. The percentages of patients reporting opioid use at baseline (n = 75, 34.2%) and 2 years after surgery (n = 55, 30.7%) were similar (P = .23). However, at last follow-up 39% of baseline opioid users (Opi) were no longer taking opioids, while 14% of initial non-users (No-Opi) reported opioid use. Regional pre- and postoperative opioid use was 5.8% and 7.7% in the Asian population, 58.3% and 53.1% in the European, and 50.5% and 40.2% in North American patients, respectively. Baseline opioid users reported more preoperative back pain than the No-Opi group (7.0 vs 5.7, P = .001), while NRS-Leg pain scores were comparable (4.8 vs 4, P = .159). Similarly, at last follow-up, patients in the Opi group had greater NRS-B scores than Non-Opi patients (3.2 vs 2.3, P = .012), but no differences in NRS-Leg pain scores (2.2 vs 2.4, P = .632) were observed. CONCLUSIONS: In this study, almost one-third of surgical ASD patients were consuming opioids both pre- and postoperatively world-wide. There were marked international variations, with patients from Asia having a much lower usage rate, suggesting a cultural influence. Despite both opioid users and nonusers benefitting from surgery, preoperative opioid use was strongly associated with significantly more back pain at baseline that persisted at 2-year follow up, as well as persistent postoperative opioid needs.

8.
Global Spine J ; : 21925682241264768, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904146

RESUMEN

STUDY DESIGN: Retrospective. OBJECTIVE: Severe curves >100° in adolescent idiopathic scoliosis (AIS) are rare and require careful operative planning. The aim of this study was to assess baseline, perioperative, and 2-year differences between anterior release with posterior instrumentation (AP), posterior instrumentation with posterior column osteotomies (P), and posterior instrumentation with 3-column vertebral osteotomies (VCR). METHODS: Two scoliosis datasets were queried for primary cases of severe thoracic AIS (≥100°) with 2-year follow-up. Pre- and 2-year postoperative radiographic measures (2D and estimated 3D kyphosis), clinical measurements, and SRS-22 outcomes were compared between three approaches. RESULTS: Sixty-one patients were included: 16 AP (26%), 38 P (62%), 7 VCR (11%). Average age was 14.4 ± 2.0 years; 75.4% were female. Preoperative thoracic curve magnitude (AP: 112°, P: 115°, VCR: 126°, P = 0.09) and T5-T12 kyphosis (AP: 38°, P: 59°, VCR: 70°, P = 0.057) were similar between groups. Estimated 3D kyphosis was less in AP vs P (-12° vs 4°, P = 0.016). Main thoracic curves corrected to 36° in AP vs 49° and 48° for P and VCR, respectively (P = 0.02). Change in estimated 3D kyphosis was greater in AP vs P and VCR (34° vs 13°, P = 0.009; 34° vs 7°, P = 0.046). One incomplete spinal cord injury had residual deficits (P; 1/61, 1.6%). All SRS-22 domains improved postoperatively. CONCLUSION: All approaches obtained satisfactory coronal and sagittal correction, but AP had smaller residual coronal deformity and greater kyphosis restoration than the other approaches. This information may help inform the decision of whether to include an anterior release for large thoracic AIS curves.

9.
World Neurosurg ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866236

RESUMEN

BACKGROUND: Severe sagittal plane deformity with loss of L4-S1 lordosis is disabling and can be improved through various surgical techniques. However, data are limited on the differing ability of anterior lumbar interbody fusion (ALIF), pedicle subtraction osteotomy (PSO), and transforaminal lumbar interbody fusion (TLIF) to achieve alignment goals in severely malaligned patients. METHODS: Severe adult spinal deformity patients with preoperative PI-LL >20°, L4-S1 lordosis <30°, and full body radiographs and PROMs at baseline and 6-week postoperative visit were included. Patients were grouped into ALIF (1-2 level ALIF at L4-S1), PSO (L4/L5 PSO), and TLIF (1-2 level TLIF at L4-S1). Comparative analyses were performed on demographics, radiographic spinopelvic parameters, complications, and PROMs. RESULTS: Among the 96 included patients, 40 underwent ALIF, 27 underwent PSO, and 29 underwent TLIF. At baseline, cohorts had comparable age, sex, race, Edmonton frailty scores, and radiographic spinopelvic parameters (P > 0.05). However, PSO was performed more often in revision cases (P < 0.001). Following surgery, L4-S1 lordosis correction (P = 0.001) was comparable among ALIF and PSO patients and caudal lordotic apex migration (P = 0.044) was highest among ALIF patients. PSO patients had higher intraoperative estimated blood loss (P < 0.001) and motor deficits (P = 0.049), and in-hospital ICU admission (P = 0.022) and blood products given (P = 0.004), but were otherwise comparable in terms of length of stay, blood transfusion given, and postoperative admission to rehab. Likewise, 90-day postoperative complication profiles and 6-week PROMs were comparable as well. CONCLUSIONS: ALIF can restore L4-S1 sagittal alignment as powerfully as PSO, with fewer intraoperative and in-hospital complications. When feasible, ALIF is a suitable alternative to PSO and likely superior to TLIF for correcting L4-S1 lordosis among patients with severe sagittal malalignment.

10.
Spine Deform ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878235

RESUMEN

BACKGROUND: Research has focused on the increased correction from a three-column osteotomy (3CO) during adult spinal deformity (ASD) surgery. However, an in-depth analysis on the performance of a 3CO in a cohort of complex spinal deformity cases has not been described. STUDY DESIGN/SETTING: This is a retrospective study on a prospectively enrolled, complex ASD database. PURPOSE: This study aimed to determine if three-column osteotomies demonstrate superior benefit in correction of complex sagittal deformity at the cost of increased perioperative complications. METHODS: Surgical complex adult spinal deformity patients were included and grouped into thoracolumbar 3COs compared to those who did not have a 3CO (No 3CO) (remaining cohort). Rigid deformity was defined as ΔLL less than 33% from standing to supine. Severe deformity was defined as global (SVA > 70 mm) or C7-PL > 70 mm, or lumbopelvic (PI-LL > 30°). Means comparison tests assessed correction by 3CO grade/location. Multivariate analysis controlling for baseline deformity evaluated outcomes up to six weeks compared to No 3CO. RESULTS: 648 patients were included (Mean age 61 ± 14.6 years, BMI 27.55 ± 5.8 kg/m2, levels fused: 12.6 ± 3.8). 126 underwent 3CO, a 20% higher usage than historical cohorts. 3COs were older, frail, and more likely to undergo revision (OR 5.2, 95% CI [2.6-10.6]; p < .001). 3COs were more likely to present with both severe global/lumbopelvic deformity (OR 4), 62.4% being rigid. 3COs had greater use of secondary rods (OR 4st) and incurred 4 times greater risk for: massive blood loss (> 3500 mL), longer LOS, SICU admission, perioperative wound and spine-related complications, and neurologic complications when performed below L3. 3COs had similar HRQL benefit, but higher perioperative opioid use. Mean segmental correction increased by grade (G3-21; G4-24; G5-27) and was 4 × greater than low-grade osteotomies, especially below L3 (OR 12). 3COs achieved 2 × greater spinopelvic correction. Higher grades properly distributed lordosis 50% of the time except L5. Pelvic compensation and non-response were relieved more often with increasing grade, with greater correction in all lower extremity parameters (p < .01). Due to the increased rate of complications, 3COs trended toward higher perioperative cost ($42,806 vs. $40,046, p = .086). CONCLUSION: Three-column osteotomy usage in contemporary complex spinal deformities is generally limited to more disabled individuals undergoing the most severe sagittal and coronal realignment procedures. While there is an increased perioperative cost and prolongation of length of stay with usage, these techniques represent the most powerful realignment techniques available with a dramatic impact on normalization at operative levels and reciprocal changes.

11.
Global Spine J ; : 21925682241262749, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869180

RESUMEN

STUDY DESIGN: An e-mail-based online survey for adult spinal deformity (ASD) surgeons. OBJECTIVE: Wound closure and dressing techniques may vary according to the discretion of the surgeon as well as geographical location. However, there are no reports on most common methods. The purpose of this study is to clarify the consensus. METHODS: An online survey was distributed via email to AO Spine members. Responses from 164 ASD surgeons were surveyed. The regions were divided into 5 regions: Europe and South Africa (ESA), North America (NA), Asia Pacific (AP), Latin America (LA), and Middle East and North Africa (MENA). Wound closure methods were evaluated by glue(G), staples(S), external non-absorbable sutures (ENS), tapes(T), and only subcuticular absorbable suture (SAS). Wound Dressings consisted of dry dressing (D), plastic occlusive dressing (PO), G, Dermabond Prineo (DP). RESULTS: The number of respondents were 57 in ESA, 33 in NA, 36 in AP, 22 in LA, and 16 in MENA. S (36.4%) was the most used wound closure method. This was followed by ENS (26.2%), SAS (14.4%), G (11.8%), and T (11.3%). S use was highest in ESA (44.3%), NA (28.6%), AP (31.7%), and MENA (58.8%). D was used by 50% of surgeons postoperatively. AP were most likely to use PO (36%). 21% of NA used DP, while between 0%-9% of surgeons used it in the rest of the world. CONCLUSION: Wound closure and dressings methods differ in the region. There are no current guidelines with these choices. Future studies should seek to standardize these choices.

12.
J Med Internet Res ; 26: e52001, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924787

RESUMEN

BACKGROUND: Due to recent advances in artificial intelligence (AI), language model applications can generate logical text output that is difficult to distinguish from human writing. ChatGPT (OpenAI) and Bard (subsequently rebranded as "Gemini"; Google AI) were developed using distinct approaches, but little has been studied about the difference in their capability to generate the abstract. The use of AI to write scientific abstracts in the field of spine surgery is the center of much debate and controversy. OBJECTIVE: The objective of this study is to assess the reproducibility of the structured abstracts generated by ChatGPT and Bard compared to human-written abstracts in the field of spine surgery. METHODS: In total, 60 abstracts dealing with spine sections were randomly selected from 7 reputable journals and used as ChatGPT and Bard input statements to generate abstracts based on supplied paper titles. A total of 174 abstracts, divided into human-written abstracts, ChatGPT-generated abstracts, and Bard-generated abstracts, were evaluated for compliance with the structured format of journal guidelines and consistency of content. The likelihood of plagiarism and AI output was assessed using the iThenticate and ZeroGPT programs, respectively. A total of 8 reviewers in the spinal field evaluated 30 randomly extracted abstracts to determine whether they were produced by AI or human authors. RESULTS: The proportion of abstracts that met journal formatting guidelines was greater among ChatGPT abstracts (34/60, 56.6%) compared with those generated by Bard (6/54, 11.1%; P<.001). However, a higher proportion of Bard abstracts (49/54, 90.7%) had word counts that met journal guidelines compared with ChatGPT abstracts (30/60, 50%; P<.001). The similarity index was significantly lower among ChatGPT-generated abstracts (20.7%) compared with Bard-generated abstracts (32.1%; P<.001). The AI-detection program predicted that 21.7% (13/60) of the human group, 63.3% (38/60) of the ChatGPT group, and 87% (47/54) of the Bard group were possibly generated by AI, with an area under the curve value of 0.863 (P<.001). The mean detection rate by human reviewers was 53.8% (SD 11.2%), achieving a sensitivity of 56.3% and a specificity of 48.4%. A total of 56.3% (63/112) of the actual human-written abstracts and 55.9% (62/128) of AI-generated abstracts were recognized as human-written and AI-generated by human reviewers, respectively. CONCLUSIONS: Both ChatGPT and Bard can be used to help write abstracts, but most AI-generated abstracts are currently considered unethical due to high plagiarism and AI-detection rates. ChatGPT-generated abstracts appear to be superior to Bard-generated abstracts in meeting journal formatting guidelines. Because humans are unable to accurately distinguish abstracts written by humans from those produced by AI programs, it is crucial to exercise special caution and examine the ethical boundaries of using AI programs, including ChatGPT and Bard.


Asunto(s)
Indización y Redacción de Resúmenes , Columna Vertebral , Humanos , Columna Vertebral/cirugía , Indización y Redacción de Resúmenes/normas , Indización y Redacción de Resúmenes/métodos , Reproducibilidad de los Resultados , Inteligencia Artificial , Escritura/normas
14.
Spine Deform ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795313

RESUMEN

PURPOSE: To evaluate previously popular technologies in the field of spine surgery, and to better understand their advantages and limitations to the current standards of care. Spine surgery is an ever-evolving field that serves to resolve various spinal pathologies in patients of all ages. While there are established treatments for various conditions, such as lumbar spinal stenosis, idiopathic scoliosis, and degenerative lumbar disease, there is always further research and development in these areas to produce innovative technologies that can lead to better outcomes. As this process progresses, we must remind ourselves of previously tried and tested inventions and their outcomes that have fallen short of becoming a standard to ensure we are able to learn lessons from the past. METHODS: A thorough literature review was conducted with the aim of compiling literature of previously utilized technologies in spine surgery. Biomedical databases were utilized to gather relevant articles including PubMed, MEDLINE, and EMBASE. Emphasis was placed on gathering articles with technologies or therapeutics aimed at treating common spinal pathologies including lumbar spinal stenosis (LSS), adolescent idiopathic scoliosis (AIS), and other degenerative lumbar spine diseases. The keywords used were: "failed technologies", "historical technologies", "spine surgery", "spinal stenosis", "adolescent idiopathic scoliosis", and "degenerative lumbar spine disease". A total of 47 articles were gathered after initial review. RESULTS: Different technologies pertaining to spine surgery were identified and critically evaluated. Some of these technologies included X-STOP, Vertiflex, Vertebral Body Stapling, and Dynesys. These technologies were evaluated for their strengths and limitations across their spinal pathology applications. While each type of technology had their benefits, the data tended to be mixed with various limitations across studies. CONCLUSION: These technologies have been trialed in the field of spine surgery across various spinal pathologies, but still prove of limited efficacy and shortcomings to the current standards of care.

15.
J Clin Med ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673475

RESUMEN

Background: The objective of this study was to evaluate if imbalance influences complication rates, radiological outcomes, and patient-reported outcomes (PROMs) following adult spinal deformity (ASD) surgery. Methods: ASD patients with baseline and 2-year radiographic and PROMs were included. Patients were grouped according to whether they answered yes or no to a recent history of pre-operative loss of balance. The groups were propensity-matched by age, pelvic incidence-lumbar lordosis (PI-LL), and surgical invasiveness score. Results: In total, 212 patients were examined (106 in each group). Patients with gait imbalance had worse baseline PROM measures, including Oswestry disability index (45.2 vs. 36.6), SF-36 mental component score (44 vs. 51.8), and SF-36 physical component score (p < 0.001 for all). After 2 years, patients with gait imbalance had less pelvic tilt correction (-1.2 vs. -3.6°, p = 0.039) for a comparable PI-LL correction (-11.9 vs. -15.1°, p = 0.144). Gait imbalance patients had higher rates of radiographic proximal junctional kyphosis (PJK) (26.4% vs. 14.2%) and implant-related complications (47.2% vs. 34.0%). After controlling for age, baseline sagittal parameters, PI-LL correction, and comorbidities, patients with imbalance had 2.2-times-increased odds of PJK after 2 years. Conclusions: Patients with a self-reported loss of balance/unsteady gait have significantly worse PROMs and higher risk of PJK.

16.
J Clin Med ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673506

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a curvature of the spine that develops in children ages 10-18 and can be attributed to unknown causes. The Lenke AIS classification system provides a template to classify these deformities by curve type paired with recommended operative treatments. Treatment of this patient population has been associated with low complication rates and overall surgical success. Nonetheless, a fraction of patients remain susceptible to revision surgery. This manuscript will focus on the aspects of AIS surgery, highlighting case examples, the different treatment approaches, complication rates, and primary reasons for revision surgery and associated outcomes.

17.
PLoS One ; 19(4): e0297541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626050

RESUMEN

STUDY DESIGN: Cross-sectional international survey with a literature review. OBJECTIVES: While some surgeons favor spine bracing after surgery for adult spine deformity (ASD) to help prevent mechanical failures, there is a lack of evidence. The objective of the present study was to better understand the current trend in the use of bracing following ASD surgery based on an international survey. METHODS: An e-mail-based online survey was conducted among over 6000 international AO Spine members regarding the post-operative management of patients with ASD. The details of brace prescription, indications and influencing factors were solicited. Descriptive data were summarized based on different demographic groups and fusion levels for the responding surgeons who annually perform at least 10 long-segment fusions of >5 levels extending to the pelvis. RESULTS: A total of 116 responses were received, including 71 surgeons (61%) who used post-operative bracing for >5 levels of long fusion. The most common reason for bracing was pain management (55%) and bone quality was the strongest influencing factor (69%). Asia-Pacific surgeons had the highest rate of bracing (88%), while North American surgeons had the lowest (45%). The most common type of brace used were TLSO for cases with an uppermost instrumented vertebra (UIV) in the low- or mid-thoracic spine and a cervical brace for UIV at T1-3. The majority (56%) used bracing for 6-12 weeks after surgery. CONCLUSIONS: The present survey demonstrated significant interest in bracing following ASD surgery, however, there is substantial variability in post-operative bracing practice. A formal study on the role of bracing in ASD surgery is needed.


Asunto(s)
Fusión Vertebral , Columna Vertebral , Adulto , Humanos , Estudios Transversales , Columna Vertebral/cirugía , Tirantes , Aparatos Ortopédicos , Encuestas y Cuestionarios , Fusión Vertebral/métodos , Estudios Retrospectivos
18.
Spine Deform ; 12(5): 1441-1452, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38609698

RESUMEN

PURPOSE: To evaluate radiographic and clinical outcomes following revision surgery after HRC fusions. METHODS: Single-institution, retrospective study of patients revised following HRC with minimum 2-year follow-up post-revision. Demographics, perioperative information, radiographic parameters, complications, and Oswestry disability index (ODI) scores were collected. Radiographic parameters included global alignment, coronal and sagittal measurements pre and postoperatively, as well as final follow-up time points. RESULTS: 26 patients were included with a mean follow-up of 3.3 ± 1.1 years. Mean age was 55.5 ± 7.8 years, BMI 25.2 ± 5.8, and 22 (85%) were females. Instrumented levels increased from 9.7 ± 2.8 to 16.0 ± 2.2. Five (19.2%) patients underwent lumbar pedicle subtraction osteotomies, and 23 (88.4%) had interbody fusions. Patients significantly improved in all radiographic parameters at immediate and final follow-up (p < 0.005), except for thoracic kyphosis and pelvic incidence (p > 0.05). Correction was maintained from immediate postop to final follow-up (p > 0.05). 20 (76.9%) of patients experienced a complication at some point within the follow-up period with the most common being a lumbar nerve root deficit (n = 7). However, only one patient had a nerve root deficit at final follow-up, that being a 4/5 unilateral anterior tibialis function. 5 (19.2%) patients required further revision within a mean of 1.8 ± 1.1 years. On average, patients had an improvement in ODI score by final follow-up (35.6 ± 16.8 vs 25.4 ± 19.8, p = 0.035). CONCLUSION: Patients revised for HRCs significantly improve, both clinically and radiographically by final follow-up. This group did have a propensity for distal lumbar root neurological issues, which were common but all patients except for one, recovered to full strength by two-year follow-up.


Asunto(s)
Reoperación , Fusión Vertebral , Humanos , Femenino , Persona de Mediana Edad , Masculino , Estudios Retrospectivos , Estudios de Seguimiento , Fusión Vertebral/métodos , Fusión Vertebral/instrumentación , Reoperación/estadística & datos numéricos , Vértebras Lumbares/cirugía , Vértebras Lumbares/diagnóstico por imagen , Resultado del Tratamiento , Cifosis/cirugía , Cifosis/diagnóstico por imagen , Adulto , Anciano , Osteotomía/métodos , Radiografía , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Vértebras Torácicas/cirugía , Vértebras Torácicas/diagnóstico por imagen
19.
Spine J ; 24(9): 1740-1749, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38614157

RESUMEN

BACKGROUND CONTEXT: Intraoperative neurophysiological monitoring (IONM) is used to reduce the risk of spinal cord injury during pediatric spinal deformity surgery. Significant reduction and/or loss of IONM signals without immediate recovery may lead the surgeon to acutely abort the case. The timing of when monitorable signals return remains largely unknown. PURPOSE: The goal of this study was to investigate the correlation between IONM signal loss, clinical examination, and subsequent normalization of IONM signals after aborted pediatric spinal deformity surgery to help determine when it is safe to return to the operating room. STUDY DESIGN/SETTING: This is a multicenter, multidisciplinary, retrospective study of pediatric patients (<18 years old) undergoing spinal deformity surgery whose surgery was aborted due to a significant reduction or loss of IONM potentials. PATIENT SAMPLE: Sixty-six patients less than 18 years old who underwent spinal deformity surgery that was aborted due to IONM signal loss were enrolled into the study. OUTCOME MEASURES: IONM data, operative reports, and clinical examinations were investigated to determine the relationship between IONM loss, clinical examination, recovery of IONM signals, and clinical outcome. METHODS: Information regarding patient demographics, deformity type, clinical history, neurologic and ambulation status, operative details, IONM information (eg, quality of loss [SSEPs, MEPs], laterality, any recovery of signals, etc.), intraoperative wake-up test, postoperative neurologic exam, postoperative imaging, and time to return to the operating were all collected. All factors were analyzed and compared with univariate and multivariate analysis using appropriate statistical analysis. RESULTS: Sixty-six patients were enrolled with a median age of 13 years [IQR 11-14], and the most common sex was female (42/66, 63.6%). Most patients had idiopathic scoliosis (33/66, 50%). The most common causes of IONM loss were screw placement (27/66, 40.9%) followed by rod correction (19/66, 28.8%). All patients had either complete bilateral (39/66, 59.0%), partial bilateral (10/66, 15.2%) or unilateral (17/66, 25.8%) MEP loss leading to termination of the case. Overall, when patients were returned to the operating room 2 weeks postoperatively, nearly 75% (40/55) had monitorable IONM signals. Univariate analysis demonstrated that bilateral SSEP loss (p=.019), bilateral SSEP and MEP loss (p=.022) and delayed clinical neurologic recovery (p=.008) were significantly associated with having unmonitorable IONM signals at repeat surgery. Multivariate regression analysis demonstrated that delayed clinical neurologic recovery (> 72 hours) was significantly associated with unmonitorable IONM signals when returned to the operating room (p=.006). All patients ultimately made a full neurologic recovery. CONCLUSIONS: In children whose spinal deformity surgery was aborted due to intraoperative IONM loss, there was a strong correlation between combined intraoperative SSEP/MEP loss, the magnitude of IONM loss, the timing of clinical recovery, and the time of electrophysiological IONM recovery. The highest likelihood of having a prolonged postoperative neurological deficit and undetectable IONM signals upon return to the OR occurs with bilateral complete loss of SSEPs and MEPs.


Asunto(s)
Monitorización Neurofisiológica Intraoperatoria , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Niño , Femenino , Masculino , Adolescente , Estudios Retrospectivos , Traumatismos de la Médula Espinal/cirugía , Preescolar , Recuperación de la Función , Escoliosis/cirugía
20.
Spine Deform ; 12(4): 1099-1106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38632183

RESUMEN

PURPOSE: This study aimed to describe the spinopelvic alignment of a cohort of young ambulatory individuals with cerebral palsy (CP) and compare it to published spinopelvic alignment data for the typically developing adolescents. METHODS: Thirty-seven adolescents (18 females) with CP at GMFCS I-III were included in this retrospective case series. Lumbar lordosis and pelvic incidence were measured, and their mismatch was calculated. A model that calculates predicted lumbar lordosis based on pelvic incidence in normative data was utilized to calculate a predicted lumbar lordosis in this cohort with cerebral palsy. RESULTS: At imaging, ages were mean and standard deviation 13.5 ± 3.0 years. Pelvic incidence was 46.2° ± 12.9°, pelvic tilt was 2.8° ± 9.4°, sacral slope was 43.6° ± 10.8°, and measured lumbar lordosis was 59.4° ± 11.6°. There were no differences in pelvic incidence or lumbar lordosis among the GMFCS levels; however, pelvic incidence was higher in females. Pelvic incidence-lumbar lordosis mismatch greater than 10° was found in 67% of the cohort. Mean predicted lumbar lordosis based on the model was 54.7° ± 8.5°, averaging 8° less than measured lordosis. CONCLUSION: PI-LL mismatch was identified in 67% of this cohort of ambulatory adolescents with CP, in part due to greater lordosis than predicted by a model based on data from adolescents without CP. The implications of this finding, such as the correlation between sagittal spinopelvic alignment and quality of life in this population, should be assessed further in ambulatory patients with cerebral palsy. LEVEL OF EVIDENCE: Level IV-retrospective cohort study and literature comparison.


Asunto(s)
Parálisis Cerebral , Lordosis , Pelvis , Humanos , Parálisis Cerebral/fisiopatología , Parálisis Cerebral/diagnóstico por imagen , Parálisis Cerebral/complicaciones , Femenino , Adolescente , Masculino , Lordosis/diagnóstico por imagen , Estudios Retrospectivos , Niño , Pelvis/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Huesos Pélvicos/diagnóstico por imagen , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA