Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Leukemia ; 37(9): 1830-1841, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495775

RESUMEN

Isocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30-40% of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for AML patients with IDH mutations. We characterized the transcriptional and epigenetic landscape with the IDH2i AG-221, using an IDH2 mutated AML cell line model and AML patient cohorts, and discovered a perturbed transcriptional regulatory network involving myeloid transcription factors that were partly restored after AG-221 treatment. In addition, hypermethylation of the HLA cluster caused a down-regulation of HLA class I genes, triggering an enhanced natural killer (NK) cell activation and an increased susceptibility to NK cell-mediated responses. Finally, analyses of DNA methylation data from IDHi-treated patients showed that non-responders still harbored hypermethylation in HLA class I genes. In conclusion, this study provides new insights suggesting that IDH mutated AML is particularly sensitive to NK cell-based personalized immunotherapy.


Asunto(s)
Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Epigénesis Genética , Mutación , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Células Asesinas Naturales/metabolismo
3.
Nucleic Acids Res ; 51(D1): D564-D570, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350659

RESUMEN

We present an update of EpiFactors, a manually curated database providing information about epigenetic regulators, their complexes, targets, and products which is openly accessible at http://epifactors.autosome.org. An updated version of the EpiFactors contains information on 902 proteins, including 101 histones and protamines, and, as a main update, a newly curated collection of 124 lncRNAs involved in epigenetic regulation. The amount of publications concerning the role of lncRNA in epigenetics is rapidly growing. Yet, the resource that compiles, integrates, organizes, and presents curated information on lncRNAs in epigenetics is missing. EpiFactors fills this gap and provides data on epigenetic regulators in an accessible and user-friendly form. For 820 of the genes in EpiFactors, we include expression estimates across multiple cell types assessed by CAGE-Seq in the FANTOM5 project. In addition, the updated EpiFactors contains information on 73 protein complexes involved in epigenetic regulation. Our resource is practical for a wide range of users, including biologists, bioinformaticians and molecular/systems biologists.


Asunto(s)
Bases de Datos Genéticas , Epigénesis Genética , Humanos , Histonas/genética , Histonas/metabolismo , Protaminas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232714

RESUMEN

Acute myeloid leukemia (AML) is a rapidly progressing heterogeneous disease with a high mortality rate, which is characterized by hyperproliferation of atypical immature myeloid cells. The number of AML patients is expected to increase in the near future, due to the old-age-associated nature of AML and increased longevity in the human population. RUNX1 and CEBPA, key transcription factors (TFs) of hematopoiesis, are frequently and independently mutated in AML. RUNX1 and CEBPA can bind TET2 demethylase and attract it to their binding sites (TFBS) in cell lines, leading to DNA demethylation of the regions nearby. Since TET2 does not have a DNA-binding domain, TFs are crucial for its guidance to target genomic locations. In this paper, we show that RUNX1 and CEBPA mutations in AML patients affect the methylation of important regulatory sites that resulted in the silencing of several RUNX1 and CEBPA target genes, most likely in a TET2-dependent manner. We demonstrated that hypermethylation of TFBS in AML cells with RUNX1 mutations was associated with resistance to anticancer chemotherapy. Demethylation therapy restored expression of the RUNX1 target gene, BIK, and increased sensitivity of AML cells to chemotherapy. If our results are confirmed, mutations in RUNX1 could be an indication for prescribing the combination of cytotoxic and demethylation therapies.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , ADN/genética , ADN/metabolismo , Metilación de ADN/genética , Desmetilación/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación
5.
Acta Neuropsychiatr ; 34(2): 86-92, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34666848

RESUMEN

Since the NAD+-dependent histone deacetylases sirtuin-1 (SIRT1) and sirtuin-2 (SIRT2) are critically involved in epigenetics, endocrinology and immunology and affect the longevity in model organisms, we investigated their expression in brains of 3-month-old and 14-15 months old rat model of depression Flinders Sensitive Line (FSL) and control Flinders Resistant Line (FRL) rats. In view of the dysregulated NPY system in depression, we also studied NPY in young and old FSL to explore the temporal trajectory of depressive-like-ageing interaction. Sirt1, Sirt2 and Npy mRNA were determined using qRT-PCR in prefrontal cortex (PFC) from young and old FSL and FRL, and in hippocampi from young FSL and FRL. PFC: Sirt1 expression was decreased in FSL (p = 0.001). An interaction between age and genotype was found (p = 0.032); young FSL had lower Sirt1 with respect to both age (p = 0.026) and genotype (p = 0.001). Sirt2 was lower in FSL (p = 0.003). Npy mRNA was downregulated in FSL (p = 0.001) but did not differ between the young and old rat groups. Hippocampus: Sirt1 was reduced in young FSL compared to young FRL (p = 0.005). There was no difference in Sirt2 between FSL and FRL. Npy levels were decreased in hippocampus of young FSL compared to young FRL (p = 0.003). Effects of ageing could not be investigated due to loss of samples. To conclude, i this is the first demonstration that SIRT1 and SIRT2 are changed in brain of FSL, a rat model of depression; ii the changes are age-dependent; iii sirtuins are potential targets for treatment of age-related neurodegenerative diseases.


Asunto(s)
Depresión , Neuropéptido Y , Sirtuina 1 , Sirtuina 2 , Sirtuinas , Animales , Depresión/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Neuropéptido Y/metabolismo , Ratas , Ratas Endogámicas , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
6.
Epigenomes ; 5(4)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34968247

RESUMEN

Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.

7.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670267

RESUMEN

The Helicase-related protein 3 (Hrp3), an ATP-dependent chromatin remodeling enzyme from the CHD family, is crucial for maintaining global nucleosome occupancy in Schizosaccharomyces pombe (S. pombe). Although the ATPase domain of Hrp3 is essential for chromatin remodeling, the contribution of non-ATPase domains of Hrp3 is still unclear. Here, we investigated the role of non-ATPase domains using in vitro methods. In our study, we expressed and purified recombinant S. pombe histone proteins, reconstituted them into histone octamers, and assembled nucleosome core particles. Using reconstituted nucleosomes and affinity-purified wild type and mutant Hrp3 from S. pombe we created a homogeneous in vitro system to evaluate the ATP hydrolyzing capacity of truncated Hrp3 proteins. We found that all non-ATPase domain deletions (∆chromo, ∆SANT, ∆SLIDE, and ∆coupling region) lead to reduced ATP hydrolyzing activities in vitro with DNA or nucleosome substrates. Only the coupling region deletion showed moderate stimulation of ATPase activity with the nucleosome. Interestingly, affinity-purified Hrp3 showed co-purification with all core histones suggesting a strong association with the nucleosomes in vivo. However, affinity-purified Hrp3 mutant with SANT and coupling regions deletion showed complete loss of interactions with the nucleosomes, while SLIDE and chromodomain deletions reduced Hrp3 interactions with the nucleosomes. Taken together, nucleosome association and ATPase stimulation by DNA or nucleosomes substrate suggest that the enzymatic activity of Hrp3 is fine-tuned by unique contributions of all four non-catalytic domains.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Eliminación de Secuencia
8.
Blood Adv ; 5(4): 1003-1016, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33591326

RESUMEN

Although copy number alterations (CNAs) and translocations constitute the backbone of the diagnosis and prognostication of acute myeloid leukemia (AML), techniques used for their assessment in routine diagnostics have not been reconsidered for decades. We used a combination of 2 next-generation sequencing-based techniques to challenge the currently recommended conventional cytogenetic analysis (CCA), comparing the approaches in a series of 281 intensively treated patients with AML. Shallow whole-genome sequencing (sWGS) outperformed CCA in detecting European Leukemia Net (ELN)-defining CNAs and showed that CCA overestimated monosomies and suboptimally reported karyotype complexity. Still, the concordance between CCA and sWGS for all ELN CNA-related criteria was 94%. Moreover, using in silico dilution, we showed that 1 million reads per patient would be enough to accurately assess ELN-defining CNAs. Total genomic loss, defined as a total loss ≥200 Mb by sWGS, was found to be a better marker for genetic complexity and poor prognosis compared with the CCA-based definition of complex karyotype. For fusion detection, the concordance between CCA and whole-transcriptome sequencing (WTS) was 99%. WTS had better sensitivity in identifying inv(16) and KMT2A rearrangements while showing limitations in detecting lowly expressed PML-RARA fusions. Ligation-dependent reverse transcription polymerase chain reaction was used for validation and was shown to be a fast and reliable method for fusion detection. We conclude that a next-generation sequencing-based approach can replace conventional CCA for karyotyping, provided that efforts are made to cover lowly expressed fusion transcripts.


Asunto(s)
Leucemia Mieloide Aguda , Aberraciones Cromosómicas , Análisis Citogenético , Variaciones en el Número de Copia de ADN , Humanos , Cariotipificación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
9.
Sci Rep ; 10(1): 6055, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269268

RESUMEN

Heterochromatin regulation is critical for genomic stability. Different H3K9 methylation states have been discovered, with distinct roles in heterochromatin formation and silencing. However, how the transition from H3K9me2 to H3K9me3 is controlled is still unclear. Here, we investigate the role of the conserved bromodomain AAA-ATPase, Abo1, involved in maintaining global nucleosome organisation in fission yeast. We identified several key factors involved in heterochromatin silencing that interact genetically with Abo1: histone deacetylase Clr3, H3K9 methyltransferase Clr4, and HP1 homolog Swi6. Cells lacking Abo1 cultivated at 30 °C exhibit an imbalance of H3K9me2 and H3K9me3 in heterochromatin. In abo1∆ cells, the centromeric constitutive heterochromatin has increased H3K9me2 but decreased H3K9me3 levels compared to wild-type. In contrast, facultative heterochromatin regions exhibit reduced H3K9me2 and H3K9me3 levels in abo1∆. Genome-wide analysis showed that abo1∆ cells have silencing defects in both the centromeres and subtelomeres, but not in a subset of heterochromatin islands in our condition. Thus, our work uncovers a role of Abo1 in stabilising directly or indirectly Clr4 recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Metilación de ADN , Inestabilidad Genómica , Heterocromatina , N-Metiltransferasa de Histona-Lisina/genética , Mutación/genética , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética
10.
Blood ; 136(3): 339-352, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32232485

RESUMEN

CCTC-binding factor (CTCF) is a key regulator of gene expression through organization of the chromatin structure. Still, it is unclear how CTCF binding is perturbed in leukemia or in cancer in general. We studied CTCF binding by chromatin immunoprecipitation sequencing in cells from patients with acute myeloid leukemia (AML) and in normal bone marrow (NBM) in the context of gene expression, DNA methylation, and azacitidine exposure. CTCF binding was increased in AML compared with NBM. Aberrant CTCF binding was enriched for motifs for key myeloid transcription factors such as CEBPA, PU.1, and RUNX1. AML with TET2 mutations was characterized by a particularly strong gain of CTCF binding, highly enriched for gain in promoter regions, while AML in general was enriched for changes at enhancers. There was a strong anticorrelation between CTCF binding and DNA methylation. Gain of CTCF occupancy was associated with increased gene expression; however, the genomic location (promoter vs distal regions) and enrichment of motifs (for repressing vs activating cofactors) were decisive for the gene expression pattern. Knockdown of CTCF in K562 cells caused loss of CTCF binding and transcriptional repression of genes with changed CTCF binding in AML, as well as loss of RUNX1 binding at RUNX1/CTCF-binding sites. In addition, CTCF knockdown caused increased differentiation. Azacitidine exposure caused major changes in CTCF occupancy in AML patient cells, partly by restoring a CTCF-binding pattern similar to NBM. We conclude that AML displays an aberrant increase in CTCF occupancy that targets key genes for AML development and impacts gene expression.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Metilación de ADN , ADN de Neoplasias/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Elementos de Respuesta , Azacitidina/farmacología , Factor de Unión a CCCTC/genética , ADN de Neoplasias/genética , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Proteínas de Neoplasias/genética
11.
Epigenetics ; 15(6-7): 702-714, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31900031

RESUMEN

The transcriptional program that dictates haematopoietic cell fate and differentiation requires an epigenetic regulatory and memory function, provided by a network of epigenetic factors that regulate DNA methylation, post-translational histone modifications and chromatin structure. Disturbed epigenetic regulation causes perturbations in the blood cell differentiation program that results in various types of haematopoietic disorders. Thus, accurate epigenetic regulation is essential for functional haematopoiesis. In this study, we used a CRISPR-Cas9 screening approach to identify new epigenetic regulators in myeloid differentiation. We designed a Chromatin-UMI CRISPR guide library targeting 1092 epigenetic regulators. Phorbol 12-myristate 13-acetate (PMA) treatment of the chronic myeloid leukaemia cell line K-562 was used as a megakaryocytic myeloid differentiation model. Both previously described developmental epigenetic regulators and novel factors were identified in our screen. In this study, we validated and characterized a role for the chromatin remodeller CHD2 in myeloid proliferation and megakaryocytic differentiation.


Asunto(s)
Proteínas de Unión al ADN/genética , Mielopoyesis , Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Humanos , Células K562 , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Acetato de Tetradecanoilforbol/farmacología
12.
Exp Hematol ; 79: 35-46.e1, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31669559

RESUMEN

Monoclonal antibodies targeting CD20 are central in the treatment of B-cell lymphomas. In diffuse large B-cell lymphoma (DLBCL), inactivating mutations of the histone acetyltransferases CREB-binding protein (CBP) and EP300 are common. Moreover, knockdown of CBP in DLBCL has been shown to result in aberrant transcriptional silencing. Expression of CD20 is sensitive to epigenetic manipulation, and histone deacetylase inhibitors have been found to potentiate treatment with anti-CD20 antibodies. Therefore, we studied the role of CBP and EP300 depletion on CD20 expression and effects of the anti-CD20 antibodies rituximab and obinutuzumab in DLBCL cells. Levels of CBP and EP300 were reduced by shRNA in the germinal centre-derived diffuse large B-cell lymphoma cell line SU-DHL4. The levels of CD20 mRNA and protein were determined by quantitative polymerase chain reaction, Western blot, and flow cytometry. Binding of the transcription factors PU.1 and FOXO1 to the CD20 promoter was determined by chromatin immunoprecipitation coupled with quantitative polymerase chain reaction. Response to the monoclonal anti-CD20 antibodies rituximab and obinutuzumab in CBP- or EP300-depleted cells was assessed by complement-dependent cell death, direct cell death, and antibody-dependent cellular cytotoxicity (ADCC). Our results suggest that depletion of CBP and EP300 levels leads to a strong reduction of CD20 expression, accompanied by reduced binding of PU.1 to the CD20 promoter. In CBP-depleted, but not EP300-depleted cells, increased binding of FOXO1 to the CD20 promoter was observed. Interestingly, CBP or EP300 depletion leads to decreased complement-dependent cell death and direct cell death in response to rituximab and obinutuzumab, which was most pronounced in response to rituximab in CBP-depleted cells. Our data suggest that inactivating mutations of CBP, and to a lesser extent EP300, may impair the response to anti-CD20 antibodies. However, these observations should be analyzed in future clinical trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD20/metabolismo , Proteína de Unión a CREB/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma de Células B Grandes Difuso/metabolismo , Proteínas de Neoplasias/metabolismo , Rituximab/farmacología , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología
13.
Oncotarget ; 8(50): 87136-87150, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29152069

RESUMEN

The Wilms' tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.

14.
Elife ; 62017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28923166

RESUMEN

The Fulani ethnic group has relatively better protection from Plasmodium falciparum malaria, as reflected by fewer symptomatic cases of malaria, lower infection rates, and lower parasite densities compared to sympatric ethnic groups. However, the basis for this lower susceptibility to malaria by the Fulani is unknown. The incidence of classic malaria resistance genes are lower in the Fulani than in other sympatric ethnic populations, and targeted SNP analyses of other candidate genes involved in the immune response to malaria have not been able to account for the observed difference in the Fulani susceptibility to P.falciparum. Therefore, we have performed a pilot study to examine global transcription and DNA methylation patterns in specific immune cell populations in the Fulani to elucidate the mechanisms that confer the lower susceptibility to P.falciparum malaria. When we compared uninfected and infected Fulani individuals, in contrast to uninfected and infected individuals from the sympatric ethnic group Mossi, we observed a key difference: a strong transcriptional response was only detected in the monocyte fraction of the Fulani, where over 1000 genes were significantly differentially expressed upon P.falciparum infection.


Asunto(s)
Resistencia a la Enfermedad , Etnicidad , Malaria Falciparum/genética , Monocitos/inmunología , Transcripción Genética , Células Cultivadas , Metilación de ADN , Perfilación de la Expresión Génica , Humanos , Proyectos Piloto
15.
Oncotarget ; 8(23): 37409-37422, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28445158

RESUMEN

Treatment with anti-CD20 antibodies is only moderately efficient in chronic lymphocytic leukemia (CLL), a feature which has been explained by the inherently low CD20 expression in CLL. It has been shown that CD20 is epigenetically regulated and that histone deacetylase inhibitors (HDACis) can increase CD20 expression in vitro in CLL. To assess whether HDACis can upregulate CD20 also in vivo in CLL, the HDACi valproate was given to three del13q/NOTCH1wt CLL patients and CD20 levels were analysed (the PREVAIL study). Valproate treatment resulted in expected global activating histone modifications suggesting HDAC inhibitory effects. However, although valproate induced expression of CD20 mRNA and protein in the del13q/NOTCH1wt I83-E95 CLL cell line, no such effects were observed in the patients studied. In contrast to the cell line, in patients valproate treatment resulted in transient recruitment of the transcriptional repressor EZH2 to the CD20 promoter, correlating to an increase of the repressive histone mark H3K27me3. This suggests that valproate-mediated induction of CD20 may be hampered by EZH2 mediated H3K27me3 in vivo in CLL. Moreover, valproate treatment resulted in induction of EZH2 and global H3K27me3 in patient cells, suggesting transcriptionally repressive effects of valproate in CLL. Our results suggest new in vivo mechanisms of HDACis which may have implications on the design of future clinical trials in B-cell malignancies.


Asunto(s)
Antígenos CD20/genética , Linfocitos B/inmunología , Inhibidores de Histona Desacetilasas/uso terapéutico , Leucemia Linfocítica Crónica de Células B/genética , Ácido Valproico/uso terapéutico , Anciano , Antígenos CD20/metabolismo , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Masculino , Regiones Promotoras Genéticas/genética , Rituximab/uso terapéutico , Eliminación de Secuencia/genética
16.
Oncotarget ; 8(17): 28812-28825, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28427179

RESUMEN

Azacitidine (Aza) is first-line treatment for patients with high-risk myelodysplastic syndromes (MDS), although its precise mechanism of action is unknown. We performed the first study to globally evaluate the epigenetic effects of Aza on MDS bone marrow progenitor cells assessing gene expression (RNA seq), DNA methylation (Illumina 450k) and the histone modifications H3K18ac and H3K9me3 (ChIP seq). Aza induced a general increase in gene expression with 924 significantly upregulated genes but this increase showed no correlation with changes in DNA methylation or H3K18ac, and only a weak association with changes in H3K9me3. Interestingly, we observed activation of transcripts containing 15 endogenous retroviruses (ERVs) confirming previous cell line studies. DNA methylation decreased moderately in 99% of all genes, with a median ß-value reduction of 0.018; the most pronounced effects seen in heterochromatin. Aza-induced hypomethylation correlated significantly with change in H3K9me3. The pattern of H3K18ac and H3K9me3 displayed large differences between patients and healthy controls without any consistent pattern induced by Aza. We conclude that the marked induction of gene expression only partly could be explained by epigenetic changes, and propose that activation of ERVs may contribute to the clinical effects of Aza in MDS.


Asunto(s)
Antineoplásicos/uso terapéutico , Azacitidina/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Retrovirus Endógenos/genética , Histonas/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Antígenos CD34/metabolismo , Antineoplásicos/farmacología , Azacitidina/farmacología , Células de la Médula Ósea/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Biología Computacional , Metilación de ADN/efectos de los fármacos , Epigénesis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Síndromes Mielodisplásicos/genética , Análisis de Secuencia de ARN , Transcriptoma , Resultado del Tratamiento
17.
Nucleic Acids Res ; 45(D1): D737-D743, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27794045

RESUMEN

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Mamíferos/genética , Programas Informáticos , Navegador Web , Animales , Biología Computacional , Humanos , Motor de Búsqueda
18.
Haematologica ; 102(2): 336-345, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27612989

RESUMEN

The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 -KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.


Asunto(s)
Empalme Alternativo , Regulación Leucémica de la Expresión Génica , Leucemia/genética , Leucemia/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Motivos de Nucleótidos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
19.
Blood ; 129(7): e13-e25, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28003272

RESUMEN

Acute myeloid leukemia (AML) is characterized by an impaired differentiation process leading to an accumulation of immature blasts in the blood. One feature of cytogenetically normal AML is alterations to the DNA methylome. We analyzed 57 AML patients with normal karyotype by using Illumina's 450k array and showed that aberrant DNA methylation is significantly altered at enhancer regions and that the methylation levels at specific enhancers predict overall survival of AML patients. The majority of sites that become differentially methylated in AML occur in regulatory elements of the human genome. Hypermethylation associates with enhancer silencing. In addition, chromatin immunoprecipitation sequencing analyses showed that a subset of hypomethylated sites correlate with enhancer activation, indicated by increased H3K27 acetylation. DNA hypomethylation is therefore not sufficient for enhancer activation. Some sites of hypomethylation occur at weak/poised enhancers marked with H3K4 monomethylation in hematopoietic progenitor cells. Other hypomethylated regions occur at sites inactive in progenitors and reflect the de novo acquisition of AML-specific enhancers. Altered enhancer dynamics are reflected in the gene expression of enhancer target genes, including genes involved in oncogenesis and blood cell development. This study demonstrates that histone variants and different histone modifications interact with aberrant DNA methylation and cause perturbed enhancer activity in cytogenetically normal AML that contributes to a leukemic transcriptome.


Asunto(s)
Metilación de ADN , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Médula Ósea/metabolismo , Médula Ósea/patología , Elementos de Facilitación Genéticos , Código de Histonas , Histonas/genética , Humanos , Leucemia Mieloide Aguda/patología , Regiones Promotoras Genéticas , Transcriptoma
20.
Oncotarget ; 8(70): 115002-115017, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383137

RESUMEN

Genetic lesions affecting epigenetic regulators are frequent in myelodysplastic syndromes (MDS). Polycomb proteins are key epigenetic regulators of differentiation and stemness that act as two multimeric complexes termed polycomb repressive complexes 1 and 2, PRC1 and PRC2, respectively. While components and regulators of PRC2 such as ASXL1 and EZH2 are frequently mutated in MDS and AML, little is known about the role of PRC1. To analyze the role of PRC1, we have taken a functional approach testing PRC1 components in loss- and gain-of-function experiments that we found overexpressed in advanced MDS patients or dynamically expressed during normal hematopoiesis. This approach allowed us to identify the enzymatically active component RING1A as the key PRC1 component in hematopoietic stem cells and MDS. Specifically, we found that RING1A is expressed in CD34+ bone marrow progenitor cells and further overexpressed in high-risk MDS patients. Knockdown of RING1A in an MDS-derived AML cell line facilitated spontaneous and retinoic acid-induced differentiation. Similarly, inactivation of RING1A in primary CD34+ cells augmented erythroid differentiation. Treatment with a small compound RING1 inhibitor reduced the colony forming capacity of CD34+ cells from MDS patients and healthy controls. In MDS patients higher RING1A expression associated with an increased number of dysplastic lineages and blasts. Our data suggests that RING1A is deregulated in MDS and plays a role in the erythroid development defect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...