Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2005): 20230794, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37583320

RESUMEN

Non-lethal infections are common in free-living animals and the associated sickness behaviours can impact crucial life-history trade-offs. However, little is known about the duration and extent of such sickness behaviours in free-living animals, and consequently how they affect life-history decisions. Here, free-living Eurasian blackbirds, Turdus merula, were immune-challenged with lipopolysaccharide (LPS) to mimic a bacterial infection and their behaviour was monitored for up to 48 days using accelerometers. As expected, immune-challenged birds were less active than controls within the first 24 h. Unexpectedly, this reduced activity remained detectable for 20 days, before both groups returned to similar activity levels. Furthermore, activity was positively correlated with a pre-experimental index of complement activity, but only in immune-challenged birds, suggesting that sickness behaviours are modulated by constitutive immune function. Differences in daily activity levels stemmed from immune-challenged birds resting earlier at dusk than control birds, while activity levels between groups were similar during core daytime hours. Overall, activity was reduced by 19% in immune-challenged birds and they were on average almost 1 h less active per day for 20 days. This unexpected longevity in sickness behaviour may have severe implications during energy-intense annual-cycle stages (e.g. breeding, migration, winter). Thus, our data help to understand the consequences of non-lethal infections on free-living animals.


Asunto(s)
Infecciones Bacterianas , Pájaros Cantores , Animales , Estaciones del Año , Migración Animal
2.
Sci Total Environ ; 742: 140493, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32629254

RESUMEN

Since neonicotinoid insecticides were introduced to the agricultural market, evidence of the negative impacts of these systemic compounds on non-target species has accumulated. Birds are one of the largest groups of species to inhabit farmland, but the extent of neonicotinoid exposure in avian communities is poorly understood and very little is known about how any exposure may affect wild birds. Here, free-living gamebirds were used as a model group to measure the extent of avian exposure to the neonicotinoid clothianidin via seed treatment. During a typical sowing period of winter cereals treated with clothianidin, blood and liver samples were collected simultaneously from individual hunted gamebird carcasses, both pre- (n = 18) and post-sowing (n = 57) and were analysed for clothianidin via LC/MS-MS. Body weight, fat score and faecal parasite load were also quantified in the birds to ascertain whether any of these health parameters were associated with clothianidin exposure under field conditions. Clothianidin was detected in 6% of individuals sampled pre-sowing and 89% of individuals sampled post-sowing. The frequency of clothianidin detection in plasma samples and the concentration of clothianidin in liver and plasma samples decreased significantly between the first week and 2-4 weeks post-sowing. Faecal parasite load was positively associated with concentrations of clothianidin in the liver (but not plasma) of partridge species, but there was no association between clothianidin concentration and fat score or body weight, for either sample type. This study provides clear evidence that treated seed is a source of pesticide exposure for gamebirds following autumn sowing. These findings have implications for gamebirds worldwide where seed treatments are in use, and will aid the design of any future avian biomonitoring studies for agrochemical compounds.


Asunto(s)
Guanidinas , Insecticidas , Animales , Hígado , Neonicotinoides , Prevalencia , Tiazoles
3.
Sci Total Environ ; 723: 138056, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32224397

RESUMEN

Neonicotinoids are the largest group of systemic insecticides worldwide and are most commonly applied as agricultural seed treatments. However, little is known about the extent to which farmland birds are exposed to these compounds during standard agricultural practices. This study uses winter cereal, treated with the neonicotinoid clothianidin, as a test system to examine patterns of exposure in farmland birds during a typical sowing period. The availability of neonicotinoid-treated seed was recorded post-sowing at 39 fields (25 farms), and camera traps were used to monitor seed consumption by wild birds in situ. The concentration of clothianidin in treated seeds and crop seedlings was measured via liquid chromatography-tandem mass spectrometry, and avian blood samples were collected from 11 species of farmland bird from a further six capture sites to quantify the prevalence and level of clothianidin exposure associated with seed treatments. Neonicotinoid-treated seeds were found on the soil surface at all but one of the fields surveyed at an average density of 2.8 seeds/m2. The concentration of clothianidin in seeds varied around the target application rate, whilst crop seedlings contained on average 5.9% of the clothianidin measured in seeds. Exposure was confirmed in 32% of bird species observed in treated fields and 50% of individual birds post-sowing; the median concentration recorded in positive samples was 12 ng/mL. Results here provide clear evidence that a variety of farmland birds are subject to neonicotinoid exposure following normal agricultural sowing of neonicotinoid-treated cereal seed. Furthermore, the widespread availability of seeds at the soil surface was identified as a primary source of exposure. Overall, these data are likely to have global implications for bird species and current agricultural policies where neonicotinoids are in use, and may be pertinent to any future risk assessments for systemic insecticide seed treatments.


Asunto(s)
Grano Comestible/química , Insecticidas/análisis , Animales , Aves , Granjas , Guanidinas/análisis , Neonicotinoides , Nitrocompuestos/análisis , Semillas/química , Tiazoles
4.
PLoS One ; 14(10): e0223093, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31574132

RESUMEN

Over the last 20 years, a new group of systemic insecticides-the neonicotinoids-has gained prominence in arable systems, and their application globally has risen year on year. Previous modelling studies using long-term data have suggested that neonicotinoid application has had a detrimental impact on bird populations, but these studies were either limited to a single species or neglected to analyse specific exposure pathways in conjunction with observed population trends. Using bird abundance data, neonicotinoid usage records and cropping data for England at a 5x5 km resolution, generalised linear mixed models were used to test for spatio-temporal associations between neonicotinoid use and changes in the populations of 22 farmland bird species between 1994 and 2014, and to determine whether any associations were explained by dietary preferences. We assigned farmland bird species to three categories of dietary exposure to neonicotinoids based on literature data for species diets and neonicotinoid residues present in dietary items. Significant estimates of neonicotinoid-related population change were obtained for 13 of the 22 species (9 positive effects, 4 negative effects). Model estimates for individual species were not collectively explained by dietary risk categories, so dietary exposure to neonicotinoids via ingestion of treated seeds and seedlings could not be confirmed as a causal factor in farmland bird declines. Although it is not possible to infer any generic effect of dietary exposure to neonicotinoids on farmland bird populations, our analysis identifies three species with significant negative estimates that may warrant further research (house sparrow Passer domesticus, skylark Alauda arvensis and red-legged partridge Alectoris rufa). We conclude that there was either no consistent effect of dietary exposure to neonicotinoids on farmland bird populations in England, or that any over-arching effect was not detectable using our study design. The potential for indirect effects of insecticide use on bird populations via reduced food availability was not considered here and should be a focus for future research.


Asunto(s)
Exposición Dietética/análisis , Monitoreo del Ambiente , Neonicotinoides/efectos adversos , Gorriones , Animales , Inglaterra , Granjas , Humanos , Imidazoles , Insecticidas/efectos adversos , Nitrocompuestos/efectos adversos , Regulación de la Población
5.
Sci Total Environ ; 649: 12-20, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30170212

RESUMEN

The isolation of antimicrobial resistant bacteria (ARB) from wildlife living adjacent to humans has led to the suggestion that such antimicrobial resistance (AMR) is anthropogenically driven by exposure to antimicrobials and ARB. However, ARB have also been detected in wildlife living in areas without interaction with humans. Here, we investigated patterns of resistance in Escherichia coli isolated from 408 wild bird and mammal faecal samples. AMR and multi-drug resistance (MDR) prevalence in wildlife samples differed significantly between a Sewage Treatment Plant (STP; wastes of antibiotic-treated humans) and a Farm site (antibiotic-treated livestock wastes) and Central site (no sources of wastes containing anthropogenic AMR or antimicrobials), but patterns of resistance also varied significantly over time and between mammals and birds. Over 30% of AMR isolates were resistant to colistin, a last-resort antibiotic, but resistance was not due to the mcr-1 gene. ESBL and AmpC activity were common in isolates from mammals. Wildlife were, therefore, harbouring resistance of clinical relevance. AMR E. coli, including MDR, were found in diverse wildlife species, and the patterns and prevalence of resistance were not consistently associated with site and therefore different exposure risks. We conclude that AMR in commensal bacteria of wildlife is not driven simply by anthropogenic factors, and, in practical terms, this may limit the utility of wildlife as sentinels of spatial variation in the transmission of environmental AMR.


Asunto(s)
Aves/microbiología , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Roedores/microbiología , Secuencia de Aminoácidos , Animales , Animales Salvajes/microbiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Inglaterra , Ambiente , Escherichia coli/fisiología , Mutación
6.
Cancer Epidemiol Biomarkers Prev ; 26(11): 1667-1675, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28978562

RESUMEN

Background: Human, animal, and cell experimental studies; human biomarker studies; and genetic studies complement epidemiologic findings and can offer insights into biological plausibility and pathways between exposure and disease, but methods for synthesizing such studies are lacking. We, therefore, developed a methodology for identifying mechanisms and carrying out systematic reviews of mechanistic studies that underpin exposure-cancer associations.Methods: A multidisciplinary team with expertise in informatics, statistics, epidemiology, systematic reviews, cancer biology, and nutrition was assembled. Five 1-day workshops were held to brainstorm ideas; in the intervening periods we carried out searches and applied our methods to a case study to test our ideas.Results: We have developed a two-stage framework, the first stage of which is designed to identify mechanisms underpinning a specific exposure-disease relationship; the second stage is a targeted systematic review of studies on a specific mechanism. As part of the methodology, we also developed an online tool for text mining for mechanism prioritization (TeMMPo) and a new graph for displaying related but heterogeneous data from epidemiologic studies (the Albatross plot).Conclusions: We have developed novel tools for identifying mechanisms and carrying out systematic reviews of mechanistic studies of exposure-disease relationships. In doing so, we have outlined how we have overcome the challenges that we faced and provided researchers with practical guides for conducting mechanistic systematic reviews.Impact: The aforementioned methodology and tools will allow potential mechanisms to be identified and the strength of the evidence underlying a particular mechanism to be assessed. Cancer Epidemiol Biomarkers Prev; 26(11); 1667-75. ©2017 AACR.


Asunto(s)
Investigación Biomédica/métodos , Medicina Basada en la Evidencia/métodos , Neoplasias/prevención & control , Proyectos de Investigación , Minería de Datos/métodos , Humanos , Colaboración Intersectorial , Neoplasias/diagnóstico , Neoplasias/epidemiología , Neoplasias/etiología
7.
Parasitology ; 140(11): 1368-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23866933

RESUMEN

Trichomonas gallinae is an emerging pathogen in wild birds, linked to recent declines in finch (Fringillidae) populations across Europe. Globally, the main hosts for this parasite are species of Columbidae (doves and pigeons); here we carry out the first investigation into the presence and incidence of Trichomonas in four species of Columbidae in the UK, through live sampling of wild-caught birds and subsequent PCR. We report the first known UK cases of Trichomonas infection in 86% of European Turtle Doves Streptopelia turtur sampled, along with 86% of Eurasian Collared Doves Streptopelia decaocto, 47% of Woodpigeons Columba palumbus and 40% of Stock Doves Columba oenas. Birds were more likely to be infected if the farm provided supplementary food for gamebirds. We found three strains of T. gallinae and one strain clustering within the Trichomonas tenax clade, not previously associated with avian hosts in the UK. One T. gallinae strain was identical at the ITS/5.8S/ITS2 ribosomal region to that responsible for the finch trichomonosis epizootic. We highlight the importance of increasing our knowledge of the diversity and ecological implications of Trichomonas parasites in order further to understand the sub-clinical impacts of parasite infection.


Asunto(s)
Enfermedades de las Aves/parasitología , Columbidae/parasitología , Tricomoniasis/veterinaria , Trichomonas/aislamiento & purificación , Animales , Enfermedades de las Aves/epidemiología , Cartilla de ADN/genética , ADN Protozoario/química , ADN Protozoario/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Variación Genética , Incidencia , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Secuencia de ADN/veterinaria , Especificidad de la Especie , Trichomonas/clasificación , Trichomonas/genética , Tricomoniasis/epidemiología , Tricomoniasis/parasitología , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...