Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2172: 51-64, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32557361

RESUMEN

Virus-induced gene silencing (VIGS) is an efficient, low-cost, and rapid functional validation tool for candidate genes in planta. The VIGS approach is particularly suitable to perform reverse genetics studies in crop species. Here we present a detailed method to perform VIGS in cassava, from target gene fragment to agroinoculation and VIGS quantitation.


Asunto(s)
Geminiviridae/patogenicidad , Manihot/metabolismo , Manihot/virología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Manihot/genética , Proteínas de Plantas/genética
2.
Plant Methods ; 14: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154909

RESUMEN

AIM: We report the construction of a Virus-Induced Gene Silencing (VIGS) vector and an agroinoculation protocol for gene silencing in cassava (Manihot esculenta Crantz) leaves and roots. The African cassava mosaic virus isolate from Nigeria (ACMV-[NOg]), which was initially cloned in a binary vector for agroinoculation assays, was modified for application as VIGS vector. The functionality of the VIGS vector was validated in Nicotiana benthamiana and subsequently applied in wild-type and transgenic cassava plants expressing the uidA gene under the control of the CaMV 35S promoter in order to facilitate the visualization of gene silencing in root tissues. VIGS vectors were targeted to the Mg2+-chelatase gene in wild type plants and both the coding and promoter sequences of the 35S::uidA transgene in transgenic plants to induce silencing. We established an efficient agro-inoculation method with the hyper-virulent Agrobacterium tumefaciens strain AGL1, which allows high virus infection rates. The method can be used as a low-cost and rapid high-throughput evaluation of gene function in cassava leaves, fibrous roots and storage roots. BACKGROUND: VIGS is a powerful tool to trigger transient sequence-specific gene silencing in planta. Gene silencing in different organs of cassava plants, including leaves, fibrous and storage roots, is useful for the analysis of gene function. RESULTS: We developed an African cassava mosaic virus-based VIGS vector as well as a rapid and efficient agro-inoculation protocol to inoculate cassava plants. The VIGS vector was validated by targeting endogenous genes from Nicotiana benthamiana and cassava as well as the uidA marker gene in transgenic cassava for visualization of gene silencing in cassava leaves and roots. CONCLUSIONS: The African cassava mosaic virus-based VIGS vector allows efficient and cost-effective inoculation of cassava for high-throughput analysis of gene function in cassava leaves and roots.

3.
Methods Protoc ; 1(4)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31164582

RESUMEN

Genetic engineering is considered to be an important tool for the improvement of cassava. Cassava is a highly heterozygous crop species for which conventional breeding is a lengthy and tedious process. Robust transformation is based on Agrobacterium-mediated transformation of friable embryogenic callus (FEC). Production of FEC is genotype-dependent and considered to be a major bottleneck for the genetic transformation of cassava. As a consequence, routine genetic transformation has only been established for a handful of cassava cultivars. Therefore, development of procedures enabling efficient production of high-quality cassava FEC is required to allow the translation of research from the model cultivar to farmer-preferred cassava cultivars. Here we study the FEC production capacity of Brazilian cassava cultivars and report the modification of the protocol for the genetic transformation of Verdinha (BRS 222), a recalcitrant cultivar with high potential for protein production that is extensively used by farmers in Brazil.

4.
Planta ; 235(4): 807-18, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22071556

RESUMEN

Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of ß-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of ß-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on ß-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased ß-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.


Asunto(s)
Glucuronidasa/biosíntesis , Proteínas de Plantas/biosíntesis , Plastidios/enzimología , Plastidios/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Nicotiana/enzimología , Nicotiana/genética , Transgenes
5.
Planta ; 231(2): 387-95, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20041332

RESUMEN

Chloroplast transformation has an extraordinary potential for antigen production in plants because of the capacity to accumulate high levels of recombinant proteins and increased biosafety due to maternal plastid inheritance in most crops. In this article, we evaluate tobacco chloroplasts transformation for the production of a highly immunogenic epitope containing amino acid residues 135-160 of the structural protein VP1 of the foot and mouth disease virus (FMDV). To increase the accumulation levels, the peptide was expressed as a fusion protein with the beta-glucuronidase reporter gene (uidA). The recombinant protein represented the 51% of the total soluble proteins in mature leaves, a level higher than those of the Rubisco large subunit, the most abundant protein in the leaf of a wild-type plant. Despite this high accumulation of heterologous protein, the transplastomic plants and wild-type tobacco were phenotypically indistinguishable. The FMDV epitope expressed in transplastomic plants was immunogenic in mice. These results show that transplastomic tobacco express efficiently the recombinant protein, and we conclude that this technology allows the production of large quantities of immunogenic proteins.


Asunto(s)
Cloroplastos/genética , Cloroplastos/virología , Epítopos/inmunología , Virus de la Fiebre Aftosa/inmunología , Nicotiana/genética , Nicotiana/virología , Transformación Genética , Animales , Proteínas de la Cápside/química , Fiebre Aftosa/virología , Vectores Genéticos/genética , Glucuronidasa/metabolismo , Ratones , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...