Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Pathol ; : 107649, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38703970

RESUMEN

Aortic diseases require a multidisciplinary management for diagnosis, treatment and follow-up with better outcomes in referral centers using a team-based approach. The setting up of a multi-disciplinary aortic team for the discussion of complex cases has been already proposed; it is also supported by the ACC/AHA. Surgeons and radiologists, more or less other physicians such as cardiologists, geneticists, rheumatologists/internal medicine specialists and pathologists are involved into such a team. The role of the cardiovascular pathologist is to examine the aortic specimens, to diagnose and classify the aortic lesions. Herein, the role of the pathologist in the aortic team is discussed and the pathobiology of aortic diseases is reviewed for reference by pathologists. The aortic specimens are mainly obtained from emergency or elective surgical procedures on the thoracic aorta, less frequently from organ/tissue (including cardiac or heart valve) donors, post-mortem procedures or abdominal aortic surgery. In the last decade, together with the progress of medical sciences, the histological definitions and classifications of the aortic pathology are undergoing thorough revisions that are addressed to an etiopathogenetic approach because of possible clinico-pathological correlations, therapeutic and prognostic impact. Pathologists may also have an important role in research and teaching. Therefore, histological analyses of the aortic specimens require adequate sample processing and pathologist expertise because histology contributes to definite diagnosis, correct management of patients and even (in genetic diseases) families, but also to research in the challenging field of aortopathies.

2.
Leukemia ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575671

RESUMEN

The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.

3.
Ann Diagn Pathol ; 60: 152020, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933810

RESUMEN

In histology, the correct handling and orientation of small/thin biopsies is often crucial for diagnosis. Automation is progressively growing and modifying the routine work in the histopathology laboratories, providing new chances for quality improvement and workload optimization. We have tested the use of Paraform orientation gels together with an automated embedding system for processing small/thin biopsies, first skin, but also other tissue/organ biopsies. The study aimed to assess the benefits and challenges of routinely using orientation gels in a high throughput pathology laboratory. Gel introduction required a short training of the pathologists, including trainees, at grossing; it did not cause significant delay at grossing, interference with embedding, or microtome steps, whereas re-do inclusions and re-cut slides were significantly reduced. In conclusion, orientation gel and automatic embedding constituted an efficient system for small/thin biopsies that had to be correctly placed and orientated, allowing the re-modeling of technicians' workflow and very safe handling of small/thin biopsies that were not manipulated further after grossing.


Asunto(s)
Laboratorios , Piel , Biopsia , Formaldehído , Geles , Humanos , Polímeros
4.
J Craniofac Surg ; 33(3): 830-834, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34334749

RESUMEN

PURPOSE: Primary oral mucosal melanoma (OMM) is a rare neoplasm accounting for the 0.2% to 0.8% of all melanomas. The aim of the present manuscript is (1) to describe 2 cases of primary OMM treated at our department, and (2) to perform a systematic literature review on primary OMM occurrence and treatment. METHODS: Two cases of primary OMM were described. A systematic review is presented in order to assess the treatment options, recurrence, metastasis development, and survival rate of primary OMM. RESULTS: Two patients were referred for the development of a lesion of the hard palate and the maxillary gingival mucosa, respectively. An incisional biopsy was performed in both patients, followed by extensive surgical resection after a thorough consideration of patient history and systemic involvement. The literature search retrieved 447 primary OMM cases. In the 30% of cases, distant metastases were already present at the time of diagnosis. The management of primary OMM most frequently involved surgical treatment and adjuvant radiotherapy. CONCLUSIONS: Primary OMM still represents a challenge for the clinician, as the diagnosis is often performed when metastases have already developed. The prognosis is generally poor, thus highlighting the need for further investigations to improve early diagnosis.


Asunto(s)
Melanoma , Neoplasias de la Boca , Humanos , Melanoma/diagnóstico , Melanoma/cirugía , Mucosa Bucal/patología , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/cirugía , Pronóstico , Estudios Retrospectivos , Síndrome
5.
Vascul Pharmacol ; 142: 106949, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34843980

RESUMEN

BACKGROUND: Ponatinib (PON), a third-generation tyrosine kinase inhibitor (TKI), has proven cardiovascular toxicity, with no known preventing agents usable to limit such side effect. Sodium-glucose cotransporter type 2 (SGLT2) inhibitors are a new class of glucose-lowering agents, featuring favorable cardiac and vascular effects. AIMS: We assessed the effects of the SGLT2 inhibitors empagliflozin (EMPA) and dapagliflozin (DAPA) on human aortic endothelial cells (HAECs) and underlying vasculo-protective mechanisms in an in vitro model of PON-induced endothelial toxicity. METHODS AND RESULTS: We exposed HAECs to PON or vehicle (DMSO) in the presence or absence of EMPA (100 and 500 nmol/L) or dapagliflozin (DAPA) for 0-48 h exposure times. Compared with vehicle, incubations of HAECs with PON significantly reduced cell viability (0.56 ± 0.11 vs 0.23 ± 0.05 absorbance units, p < 0.01), increased the number of senescent cells at ß-gal-assay (PON 9 ± 4 vs basal DMSO 3 ± 1 ß-Gal+ cells/field, p < 0.01), decreased tubulization in Matrigel (PON PON: 6 ± 1 vs basal DMSO 12 ± 1 tubuli number/field, p < 0.05) with a non-statistically significant trend of PON to decrease the number of autophagic cells at immunofluorescence assay and flow cytometry. EMPA reverted the effects of PON on cell viability (E 500 + PON 0.24 ± 0.05 vs PON 0.56 ± 0.11 absorbance units, p < 0.01) and induced autophagy (E 500 7 ± 4.3 vs basal DMSO 2.6 ± 2.3 mean fluorescence vs PON 2.6 ± 2.4 mean fluorescence, p < 0.05). EMPA and DAPA also reversed the effects of PON on cell senescence (E 500 + PON 4 ± 1 and DAPA 100 4 ± 2 vs PON 9 ± 4 ß-Gal+ cells/field, p < 0.01) and improved cell tubulization (E 500 + PON 21 ± 3 vs PON 6 ± 1 tubuli number/field, p < 0.05; DAPA 100 + PON 16 ± 2 vs PON 6 ± 1 tubuli number/field, p < 0.05). CONCLUSION: EMPA and DAPA attenuate the vasculo-toxic effect exerted by PON by reverting endothelial cell senescence and dysfunction. These findings support the design of clinical studies exploring the vasculo-protective effects of EMPA or DAPA on PON-induced vascular toxicity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Endoteliales , Senescencia Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/farmacología , Humanos , Imidazoles , Piridazinas , Sodio/farmacología , Sodio/uso terapéutico
6.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003328

RESUMEN

Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by the presence of proteinaceous aggregates of αSynuclein (αSyn) in the dopaminergic neurons. Chaperones are key components of the proteostasis network that are able to counteract αSyn's aggregation, as well as its toxic effects. Clusterin (CLU), a molecular chaperone, was consistently found to interfere with Aß aggregation in Alzheimer's Disease (AD). However, its role in PD pathogenesis has yet to be extensively investigated. In this study, we assessed the involvement of CLU in the αSyn aggregation process by using SH-SY5Y cells stably overexpressing αSyn (SH-Syn). First, we showed that αSyn overexpression caused a strong increase in CLU expression without affecting levels of Hsp27, Hsp70, and Hsp90, which are the chaperones widely recognized to counteract αSyn burden. Then, we demonstrated that αSyn aggregation, induced by proteasome inhibition, determines a strong increase of CLU in insoluble aggregates. Remarkably, we revealed that CLU down-regulation results in an increase of αSyn aggregates in SH-Syn without significantly affecting cell viability and the Unfolded Protein Response (UPR). Furthermore, we demonstrated the direct molecular interaction between CLU and αSyn via a co-immunoprecipitation (co-IP) assay. All together, these findings provide incontrovertible evidence that CLU is an important player in the response orchestrated by the cell to cope with αSyn burden.


Asunto(s)
Clusterina/genética , Enfermedad de Parkinson/genética , Agregación Patológica de Proteínas/genética , alfa-Sinucleína/genética , Péptidos beta-Amiloides/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/patología , Respuesta de Proteína Desplegada/genética
7.
J Oncol ; 2019: 4081624, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885575

RESUMEN

Clusterin (CLU) is a stress-activated glycoprotein, whose expression is altered both in inflammation and cancer. Previously, we showed that abrogation of CLU expression in cancer-prone mice (TRAMP) results in the enhancement of tumor spreading and homing, concomitant with an enhanced expression of NF-κB. In the present paper, we carried out an extensive experimental work by utilizing microarray gene expression data, as well as in vitro and in vivo models of prostate cancer (PCa). Our results demonstrated that (i) CLU expression is significantly downregulated in human PCa and inversely correlates with the expression of p65 in metastases; (ii) CLU overexpression in PCa cells reduces the Ser536 phosphorylation of p65, inhibits NF-κB nuclear translocation, and reduces the transcription of matrix metalloproteinase-9 and metalloproteinase-2 (MMP-9 and MMP-2). Conversely, CLU silencing promotes NF-κB activation and transcriptional upregulation of MMP-9; and (iii) expression and activity of MMP-2 and MMP-9 are increased in CLU-/- mice (CLUKO) and in TRAMP/CLUKO mice in comparison to their relative Clu+/+ littermates. Taken together, our data support the hypothesis that CLU downregulation, an early and relevant event in PCa onset, may inhibit NF-κB activation and limit the execution of a transcriptional program that favor the disease progression towards a metastatic stage.

8.
Bioconjug Chem ; 30(3): 614-620, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30609890

RESUMEN

H2S donors are currently emerging as promising therapeutic agents in a wide variety of pathologies, including tumors. Cancer cells are characterized by an enhanced uptake of sugars, such as glucose. Therefore, novel glycoconjugated H2S donors were synthesized so that high concentrations of H2S can be selectively achieved therein. Dithiolethione portions or isothiocyanate portions were selected for their well-known H2S-releasing properties in the presence of biological substrates. A synthetic procedure employing trichloroacetimidate glycosyl donors was applied to produce, in a stereoselective fashion, C1-glycoconjugates, whereas C6-glycoconjugates were obtained by a Mitsunobu-based transformation. The resulting molecules were then tested for their anticancer effects on human pancreas adenocarcinoma ascites metastasis cell line AsPC-1. The most potent inhibitors of cell viability (6aß and 7b) proved to release H2S inside the AsPC-1 cells and to alter the basal cell cycle.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Glicoconjugados/química , Glicoconjugados/farmacología , Sulfuro de Hidrógeno/farmacología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/síntesis química , Línea Celular Tumoral , Glicoconjugados/síntesis química , Humanos , Sulfuro de Hidrógeno/administración & dosificación , Isotiocianatos/síntesis química , Isotiocianatos/química , Isotiocianatos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Estereoisomerismo , Tionas/síntesis química , Tionas/química , Tionas/farmacología , Neoplasias Pancreáticas
9.
Antioxidants (Basel) ; 6(2)2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28379200

RESUMEN

Green tea catechins (GTCs) are a family of chemically related compounds usually classified as antioxidant molecules. Epidemiological evidences, supported by interventional studies, highlighted a more than promising role for GTCs in human prostate cancer (PCa) chemoprevention. In the last decades, many efforts have been made to gain new insights into the mechanism of action of GTCs. Now it is clear that GTCs' anticancer action can no longer be simplistically limited to their direct antioxidant/pro-oxidant properties. Recent contributions to the advancement of knowledge in this field have shown that GTCs specifically interact with cellular targets, including cell surface receptors, lipid rafts, and endoplasmic reticulum, modulate gene expression through direct effect on transcription factors or indirect epigenetic mechanisms, and interfere with intracellular proteostasis at various levels. Many of the effects observed in vitro are dose and cell context dependent and take place at concentrations that cannot be achieved in vivo. Poor intestinal absorption together with an extensive systemic and enteric metabolism influence GTCs' bioavailability through still poorly understood mechanisms. Recent efforts to develop delivery systems that increase GTCs' overall bioavailability, by means of biopolymeric nanoparticles, represent the main way to translate preclinical results in a real clinical scenario for PCa chemoprevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...