Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22277784

RESUMEN

BackgroundHealthcare workers treating patients with SARS-CoV-2 are at risk of infection from patient-emitted virus-laden aerosols. We quantified the reduction of airborne infectious virus in a simulated hospital room when a ventilated patient isolation (McMonty) hood was in use. MethodsWe nebulised 109 plaque forming units (PFU) of bacteriophage PhiX174 virus into a 35.1m3 room with a hood active or inactive. The airborne concentration of infectious virus was measured by BioSpot-VIVAS and settle plates using plaque assay quantification on the bacterial host Escherichia coli C. The particle number concentration (PNC) was monitored continuously using an optical particle sizer. ResultsMedian airborne viral concentration in the room reached 1.41 x 105 PFU.m-3 with the hood inactive. Using the active hood as source containment reduced infectious virus concentration by 374-fold in air samples. This was associated with a 109-fold reduction in total airborne particle number escape rate. The deposition of infectious virus on the surface of settle plates was reduced by 87-fold. ConclusionsThe isolation hood significantly reduced airborne infectious virus exposure in a simulated hospital room. Our findings support the use of the hood to limit exposure of healthcare workers to airborne virus in clinical environments. Lay summaryCOVID-19 patients exhale aerosol particles which can potentially carry infectious viruses into the hospital environment, putting healthcare workers at risk of infection. This risk can be reduced by proper use of personal protective equipment (PPE) to protect workers from virus exposure. More effective strategies, however, aim to provide source control, reducing the amount of virus-contaminated air that is exhaled into the hospital room. The McMonty isolation hood has been developed to trap and decontaminate the air around an infected patient. We tested the efficacy of the hood using a live virus model to mimic a COVID-19 patient in a hospital room. Using the McMonty hood reduced the amount of exhaled air particles in the room by over 109-times. In our tests, people working in the room were exposed to 374-times less infectious virus in the air, and room surfaces were 87-times less contaminated. Our study supports using devices like the McMonty hood in combination with PPE to keep healthcare workers safe from virus exposure at work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...