Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 128(3): 419-432, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33342222

RESUMEN

RATIONALE: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. OBJECTIVE: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes and the subjacent subsarcolemmal mitochondria. METHODS AND RESULTS: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to subjacent subsarcolemmal mitochondria; we further found that subjacent subsarcolemmal mitochondria preferentially host the mitochondrial NCLX (Na+/Ca2+ exchanger). This anatomic proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX (tetrodotoxin) exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased reactive oxygen species production when compared with interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A (encoding NaV1.5) and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome data set (Genotype-Tissue Expression) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. CONCLUSIONS: We describe an anatomic hub (a couplon) formed by sodium channel clusters and subjacent subsarcolemmal mitochondria. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.


Asunto(s)
Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Señalización del Calcio , Línea Celular , Femenino , Humanos , Cinética , Masculino , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/genética , Miocitos Cardíacos/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5/genética , Imagen Individual de Molécula , Intercambiador de Sodio-Calcio/genética , Superóxidos/metabolismo
2.
Commun Biol ; 3(1): 5, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31925335

RESUMEN

The glycocalyx is a highly hydrated, glycoprotein-rich coat shrouding many eukaryotic and prokaryotic cells. The intestinal epithelial glycocalyx, comprising glycosylated transmembrane mucins, is part of the primary host-microbe interface and is essential for nutrient absorption. Its disruption has been implicated in numerous gastrointestinal diseases. Yet, due to challenges in preserving and visualizing its native organization, glycocalyx structure-function relationships remain unclear. Here, we characterize the nanoarchitecture of the murine enteric glycocalyx using freeze-etching and electron tomography. Micrometer-long mucin filaments emerge from microvillar-tips and, through zigzagged lateral interactions form a three-dimensional columnar network with a 30 nm mesh. Filament-termini converge into globular structures ~30 nm apart that are liquid-crystalline packed within a single plane. Finally, we assess glycocalyx deformability and porosity using intravital microscopy. We argue that the columnar network architecture and the liquid-crystalline packing of the filament termini allow the glycocalyx to function as a deformable size-exclusion filter of luminal contents.


Asunto(s)
Tomografía con Microscopio Electrónico , Glicocálix/química , Glicocálix/ultraestructura , Microscopía Intravital , Animales , Dextranos/química , Tomografía con Microscopio Electrónico/métodos , Técnica del Anticuerpo Fluorescente , Microscopía Intravital/métodos , Ratones , Microvellosidades/ultraestructura , Porosidad
3.
Neuron ; 97(3): 555-570.e6, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29395909

RESUMEN

The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood. Here we show phosphorylated myosin light chain (pMLC), an activator of contractile myosin II, is highly enriched in the assembling and mature AIS, where it associates with actin rings. MLC phosphorylation and myosin II contractile activity are required for AIS assembly, and they regulate the distribution of AIS components along the axon. pMLC is rapidly lost during depolarization, destabilizing actin and thereby providing a mechanism for activity-dependent structural plasticity of the AIS. Together, these results identify pMLC/myosin II activity as a common link between AIS assembly and plasticity.


Asunto(s)
Actinas/metabolismo , Segmento Inicial del Axón/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Corteza Cerebral/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatasa de Miosina de Cadena Ligera/genética , Fosforilación , Cultivo Primario de Células , Ratas Sprague-Dawley
4.
J Am Heart Assoc ; 6(12)2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222390

RESUMEN

BACKGROUND: Cardiac sodium channel (NaV1.5) dysfunction contributes to arrhythmogenesis during pathophysiological conditions. Nav1.5 localizes to distinct subcellular microdomains within the cardiomyocyte, where it associates with region-specific proteins, yielding complexes whose function is location specific. We herein investigated sodium channel remodeling within distinct cardiomyocyte microdomains during heart failure. METHODS AND RESULTS: Mice were subjected to 6 weeks of transverse aortic constriction (TAC; n=32) to induce heart failure. Sham-operated on mice were used as controls (n=20). TAC led to reduced left ventricular ejection fraction, QRS prolongation, increased heart mass, and upregulation of prohypertrophic genes. Whole-cell sodium current (INa) density was decreased by 30% in TAC versus sham-operated on cardiomyocytes. On macropatch analysis, INa in TAC cardiomyocytes was reduced by 50% at the lateral membrane (LM) and by 40% at the intercalated disc. Electron microscopy and scanning ion conductance microscopy revealed remodeling of the intercalated disc (replacement of [inter-]plicate regions by large foldings) and LM (less identifiable T tubules and reduced Z-groove ratios). Using scanning ion conductance microscopy, cell-attached recordings in LM subdomains revealed decreased INa and increased late openings specifically at the crest of TAC cardiomyocytes, but not in groove/T tubules. Failing cardiomyocytes displayed a denser, but more stable, microtubule network (demonstrated by increased α-tubulin and Glu-tubulin expression). Superresolution microscopy showed reduced average NaV1.5 cluster size at the LM of TAC cells, in line with reduced INa. CONCLUSIONS: Heart failure induces structural remodeling of the intercalated disc, LM, and microtubule network in cardiomyocytes. These adaptations are accompanied by alterations in NaV1.5 clustering and INa within distinct subcellular microdomains of failing cardiomyocytes.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología
5.
PLoS Comput Biol ; 13(10): e1005790, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28991926

RESUMEN

We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.


Asunto(s)
Citoesqueleto/química , Eritrocitos/citología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Biológicos , Espectrina/química , Algoritmos , Elasticidad , Deformación Eritrocítica , Humanos
6.
Nat Commun ; 8(1): 106, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740174

RESUMEN

Plakophilin-2 (PKP2) is a component of the desmosome and known for its role in cell-cell adhesion. Mutations in human PKP2 associate with a life-threatening arrhythmogenic cardiomyopathy, often of right ventricular predominance. Here, we use a range of state-of-the-art methods and a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mouse to demonstrate that in addition to its role in cell adhesion, PKP2 is necessary to maintain transcription of genes that control intracellular calcium cycling. Lack of PKP2 reduces expression of Ryr2 (coding for Ryanodine Receptor 2), Ank2 (coding for Ankyrin-B), Cacna1c (coding for CaV1.2) and Trdn (coding for triadin), and protein levels of calsequestrin-2 (Casq2). These factors combined lead to disruption of intracellular calcium homeostasis and isoproterenol-induced arrhythmias that are prevented by flecainide treatment. We propose a previously unrecognized arrhythmogenic mechanism related to PKP2 expression and suggest that mutations in PKP2 in humans may cause life-threatening arrhythmias even in the absence of structural disease.It is believed that mutations in desmosomal adhesion complex protein plakophilin 2 (PKP2) cause arrhythmia due to loss of cell-cell communication. Here the authors show that PKP2 controls the expression of proteins involved in calcium cycling in adult mouse hearts, and that lack of PKP2 can cause arrhythmia in a structurally normal heart.


Asunto(s)
Calcio/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Placofilinas/genética , Transcripción Genética , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Western Blotting , Expresión Génica , Corazón/fisiopatología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Miocardio/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Placofilinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Cardiovasc Res ; 113(1): 102-111, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069705

RESUMEN

AIMS: Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is often associated with desmosomal mutations. Recent studies suggest an interaction between the desmosome and sodium channel protein Nav1.5. We aimed to determine the prevalence and biophysical properties of mutations in SCN5A (the gene encoding Nav1.5) in ARVD/C. METHODS AND RESULTS: We performed whole-exome sequencing in six ARVD/C patients (33% male, 38.2 ± 12.1 years) without a desmosomal mutation. We found a rare missense variant (p.Arg1898His; R1898H) in SCN5A in one patient. We generated induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) from the patient's peripheral blood mononuclear cells. The variant was then corrected (R1898R) using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 technology, allowing us to study the impact of the R1898H substitution in the same cellular background. Whole-cell patch clamping revealed a 36% reduction in peak sodium current (P = 0.002); super-resolution fluorescence microscopy showed reduced abundance of NaV1.5 (P = 0.005) and N-Cadherin (P = 0.026) clusters at the intercalated disc. Subsequently, we sequenced SCN5A in an additional 281 ARVD/C patients (60% male, 34.8 ± 13.7 years, 52% desmosomal mutation-carriers). Five (1.8%) subjects harboured a putatively pathogenic SCN5A variant (p.Tyr416Cys, p.Leu729del, p.Arg1623Ter, p.Ser1787Asn, and p.Val2016Met). SCN5A variants were associated with prolonged QRS duration (119 ± 15 vs. 94 ± 14 ms, P < 0.01) and all SCN5A variant carriers had major structural abnormalities on cardiac imaging. CONCLUSIONS: Almost 2% of ARVD/C patients harbour rare SCN5A variants. For one of these variants, we demonstrated reduced sodium current, Nav1.5 and N-Cadherin clusters at junctional sites. This suggests that Nav1.5 is in a functional complex with adhesion molecules, and reveals potential non-canonical mechanisms by which Nav1.5 dysfunction causes cardiomyopathy.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Antígenos CD/metabolismo , Displasia Ventricular Derecha Arritmogénica/diagnóstico por imagen , Displasia Ventricular Derecha Arritmogénica/metabolismo , Sistemas CRISPR-Cas , Cadherinas/metabolismo , Diferenciación Celular , Análisis Mutacional de ADN , Electrocardiografía , Exoma , Femenino , Edición Génica/métodos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Imagen por Resonancia Magnética , Masculino , Potenciales de la Membrana , Persona de Mediana Edad , Análisis Multinivel , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Países Bajos , Fenotipo , Sodio/metabolismo , Transfección , Estados Unidos , Adulto Joven
9.
Nat Commun ; 7: 10342, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26787348

RESUMEN

Intercellular adhesion and electrical excitability are considered separate cellular properties. Studies of myelinated fibres, however, show that voltage-gated sodium channels (VGSCs) aggregate with cell adhesion molecules at discrete subcellular locations, such as the nodes of Ranvier. Demonstration of similar macromolecular organization in cardiac muscle is missing. Here we combine nanoscale-imaging (single-molecule localization microscopy; electron microscopy; and 'angle view' scanning patch clamp) with mathematical simulations to demonstrate distinct hubs at the cardiac intercalated disc, populated by clusters of the adhesion molecule N-cadherin and the VGSC NaV1.5. We show that the N-cadherin-NaV1.5 association is not random, that NaV1.5 molecules in these clusters are major contributors to cardiac sodium current, and that loss of NaV1.5 expression reduces intercellular adhesion strength. We speculate that adhesion/excitability nodes are key sites for crosstalk of the contractile and electrical molecular apparatus and may represent the structural substrate of cardiomyopathies in patients with mutations in molecules of the VGSC complex.


Asunto(s)
Miocardio/metabolismo , Animales , Cadherinas/metabolismo , Ratones , Miocardio/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Canales de Sodio Activados por Voltaje/metabolismo
10.
Semin Cell Dev Biol ; 50: 13-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26673388

RESUMEN

Connexin43 is the major component of gap junctions, an anatomical structure present in the cardiac intercalated disc that provides a low-resistance pathway for direct cell-to-cell passage of electrical charge. Recent studies have shown that in addition to its well-established function as an integral membrane protein that oligomerizes to form gap junctions, Cx43 plays other roles that are independent of channel (or perhaps even hemi-channel) formation. This article discusses non-canonical functions of Cx43. In particular, we focus on the role of Cx43 as a part of a protein interacting network, a connexome, where molecules classically defined as belonging to the mechanical junctions, the gap junctions and the sodium channel complex, multitask and work together to bring about excitability, electrical and mechanical coupling between cardiac cells. Overall, viewing Cx43 as a multi-functional protein, beyond gap junctions, opens a window to better understand the function of the intercalated disc and the pathological consequences that may result from changes in the abundance or localization of Cx43 in the intercalated disc subdomain.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexinas/metabolismo , Miocardio/metabolismo , Proteoma/metabolismo , Animales , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Humanos , Microtúbulos/metabolismo
11.
Cardiovasc Res ; 107(4): 442-52, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26113266

RESUMEN

AIMS: Progress in tissue preservation (high-pressure freezing), data acquisition (tomographic electron microscopy, TEM), and analysis (image segmentation and quantification) have greatly improved the level of information extracted from ultrastructural images. Here, we combined these methods and developed analytical tools to provide an in-depth morphometric description of the intercalated disc (ID) in adult murine ventricle. As a point of comparison, we characterized the ultrastructure of the ID in mice heterozygous-null for the desmosomal gene plakophilin-2 (PKP2; mice dubbed PKP2-Hz). METHODS AND RESULTS: Tomographic EM images of thin sections of adult mouse ventricular tissue were processed by image segmentation analysis. Novel morphometric routines allowed us to generate the first quantitative description of the ID intercellular space based on three-dimensional data. We show that complex invaginations of the cell membrane significantly increased the total ID surface area. In addition, PKP2-Hz samples showed increased average intercellular spacing, ID surface area, and membrane tortuosity, as well as reduced number and length of mechanical junctions compared with control. Finally, we observed membranous structures reminiscent of junctional sarcoplasmic reticulum at the ID, which were significantly more abundant in PKP2-Hz hearts. CONCLUSION: We have developed a systematic method to characterize the ultrastructure of the intercellular space in the adult murine ventricle and have provided a quantitative description of the structure of the intercellular membranes and of the intercellular space. We further show that PKP2 deficiency associates with ultrastructural defects. The possible importance of the intercellular space in cardiac behaviour is discussed.


Asunto(s)
Ventrículos Cardíacos/ultraestructura , Miocardio/ultraestructura , Miocitos Cardíacos/ultraestructura , Animales , Desmosomas/metabolismo , Desmosomas/ultraestructura , Espacio Extracelular/metabolismo , Ventrículos Cardíacos/metabolismo , Espacio Intracelular/metabolismo , Ratones , Microscopía Electrónica/métodos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Placofilinas/deficiencia , Placofilinas/genética , Retículo Sarcoplasmático/ultraestructura
12.
Proc Natl Acad Sci U S A ; 112(20): E2575-84, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941401

RESUMEN

Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , ADN Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Western Blotting , Línea Celular Tumoral , ADN Ligasa (ATP) , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Cinética
13.
Cardiovasc Res ; 104(2): 371-81, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25139742

RESUMEN

AIMS: It is well known that connexin43 (Cx43) forms gap junctions. We recently showed that Cx43 is also part of a protein-interacting network that regulates excitability. Cardiac-specific truncation of Cx43 C-terminus (mutant 'Cx43D378stop') led to lethal arrhythmias. Cx43D378stop localized to the intercalated disc (ID); cell-cell coupling was normal, but there was significant sodium current (INa) loss. We proposed that the microtubule plus-end is at the crux of the Cx43-INa relation. Yet, specific localization of relevant molecular players was prevented due to the resolution limit of fluorescence microscopy. Here, we use nanoscale imaging to establish: (i) the morphology of clusters formed by the microtubule plus-end tracking protein 'end-binding 1' (EB1), (ii) their position, and that of sodium channel alpha-subunit NaV1.5, relative to N-cadherin-rich sites, and (iii) the role of Cx43 C-terminus on the above-mentioned parameters and on the location-specific function of INa. METHODS AND RESULTS: Super-resolution fluorescence localization microscopy in murine adult cardiomyocytes revealed EB1 and NaV1.5 as distinct clusters preferentially localized to N-cadherin-rich sites. Extent of co-localization decreased in Cx43D378stop cells. Macropatch and scanning patch clamp showed reduced INa exclusively at cell end, without changes in unitary conductance. Experiments in Cx43-modified HL1 cells confirmed the relation between Cx43, INa, and microtubules. CONCLUSIONS: NaV1.5 and EB1 localization at the cell end is Cx43-dependent. Cx43 is part of a molecular complex that determines capture of the microtubule plus-end at the ID, facilitating cargo delivery. These observations link excitability and electrical coupling through a common molecular mechanism.


Asunto(s)
Conexina 43/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Cadherinas/metabolismo , Línea Celular , Conexina 43/química , Conexina 43/genética , Femenino , Masculino , Potenciales de la Membrana , Ratones Transgénicos , Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/química , Nanotecnología/métodos , Técnicas de Placa-Clamp , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Sodio/metabolismo , Factores de Tiempo
14.
J Biol Chem ; 288(1): 274-84, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23184945

RESUMEN

Filopodia are cell surface protrusions that are essential for cell migration. This finger-like structure is supported by rigid tightly bundled actin filaments. The protein responsible for actin bundling in filopodia is fascin. However, the mechanism by which fascin functions in filopodial formation is not clear. Here we provide biochemical, cryo-electron tomographic, and x-ray crystal structural data demonstrating the unique structural characteristics of fascin. Systematic mutagenesis studies on 100 mutants of fascin indicate that there are two major actin-binding sites on fascin. Crystal structures of four fascin mutants reveal concerted conformational changes in fascin from inactive to active states in the process of actin bundling. Mutations in any one of the actin-binding sites impair the cellular function of fascin in filopodial formation. Altogether, our data reveal the molecular mechanism of fascin function in filopodial formation.


Asunto(s)
Proteínas Portadoras/química , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Microfilamentos/química , Seudópodos/metabolismo , Actinas/química , Actinas/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente/métodos , Modelos Moleculares , Conformación Molecular , Metástasis de la Neoplasia , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Transducción de Señal
15.
Biochem J ; 442(2): 323-34, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22132725

RESUMEN

Synaptic glycine levels are controlled by GLYTs (glycine transporters). GLYT1 is the main regulator of synaptic glycine concentrations and catalyses Na+-Cl--glycine co-transport with a 2:1:1 stoichiometry. In contrast, neuronal GLYT2 supplies glycine to the presynaptic terminal with a 3:1:1 stoichiometry. We subjected homology models of GLYT1 and GLYT2 to molecular dynamics simulations in the presence of Na+. Using molecular interaction potential maps and in silico mutagenesis, we identified a conserved region in the GLYT2 external vestibule likely to be involved in Na+ interactions. Replacement of Asp471 in this region reduced Na+ affinity and Na+ co-operativity of transport, an effect not produced in the homologous position (Asp295) in GLYT1. Unlike the GLYT1-Asp295 mutation, this Asp471 mutant increased sodium leakage and non-stoichiometric uncoupled ion movements through GLYT2, as determined by simultaneously measuring current and [3H]glycine accumulation. The homologous Asp471 and Asp295 positions exhibited distinct cation-sensitive external accessibility, and they were involved in Na+ and Li+-induced conformational changes. Although these two cations had opposite effects on GLYT1, they had comparable effects on accessibility in GLYT2, explaining the inhibitory and stimulatory responses to lithium exhibited by the two transporters. On the basis of these findings, we propose a role for Asp471 in controlling cation access to GLYT2 Na+ sites, ion coupling during transport and the subsequent conformational changes.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Sustitución de Aminoácidos , Animales , Ácido Aspártico/química , Células COS , Chlorocebus aethiops , Secuencia Conservada , Fenómenos Electrofisiológicos , Femenino , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Técnicas In Vitro , Transporte Iónico/efectos de los fármacos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Compuestos de Espiro/farmacología , Xenopus laevis
16.
J Neurochem ; 118(2): 195-204, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21574997

RESUMEN

Glycine synaptic levels are controlled by glycine transporters (GLYTs) catalyzing Na(+)/Cl(-)/glycine cotransport. GLYT1 displays a 2:1 :1 stoichiometry and is the main regulator of extracellular glycine concentrations. The neuronal GLYT2, with higher sodium coupling (3:1 :1), supplies glycine to the pre-synaptic terminal to refill synaptic vesicles. In this work, using structural homology modelling and molecular dynamics simulations of GLYTs, we predict the conservation of the two sodium sites present in the template (leucine transporter from Aquifex aeolicus), and confirm its use by mutagenesis and functional analysis. GLYTs Na1 and Na2 sites show differential cation selectivity, as inferred from the action of lithium, a non-transport-supporting ion, on Na(+)-site mutants. GLYTs lithium responses were unchanged in Na1-site mutants, but abolished or inverted in mutants of Na2 site, which binds lithium in the presence of low sodium concentrations and therefore, controls lithium responses. Here, we report, for the first time, that lithium exerts opposite actions on GLYTs isoforms. Glycine transport by GLYT1 is inhibited by lithium whereas GLYT2 transport is stimulated, and this effect is more evident at increased glycine concentrations. In contrast to GLYT1, high and low affinity lithium-binding processes were detected in GLYT2.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Litio/fisiología , Animales , Células COS , Chlorocebus aethiops , Glicina/metabolismo , Litio/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología
17.
Virology ; 414(2): 103-9, 2011 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-21489589

RESUMEN

Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage ϕ12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of ϕ12 demonstrates that the gene for the hexameric spike is located in ϕ12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimates derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity.


Asunto(s)
Bacteriófagos/fisiología , Especificidad del Huésped , Pseudomonas syringae/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Bacteriófagos/química , Bacteriófagos/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/genética
18.
Science ; 326(5957): 1235-40, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19965468

RESUMEN

The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.


Asunto(s)
Proteínas Bacterianas/análisis , Genoma Bacteriano , Complejos Multiproteicos/análisis , Mycoplasma pneumoniae/química , Mycoplasma pneumoniae/genética , Proteoma , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biología Computacional , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Mycoplasma pneumoniae/metabolismo , Mycoplasma pneumoniae/ultraestructura , Reconocimiento de Normas Patrones Automatizadas , Mapeo de Interacción de Proteínas , Biología de Sistemas
19.
Proteins ; 71(1): 175-88, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17985353

RESUMEN

The structural refinement of protein models is a challenging problem in protein structure prediction (Moult et al., Proteins 2003;53(Suppl 6):334-339). Most attempts to refine comparative models lead to degradation rather than improvement in model quality, so most current comparative modeling procedures omit the refinement step. However, it has been shown that even in the absence of alignment errors and using optimal templates, methods based on a single template have intrinsic limitations, and that refinement is needed to improve model accuracy. It is thought that failure of current methods originates on one hand from the inaccuracy of the effective free energy functions adopted, which do not represent properly the energetic balance in the native state, and on the other hand from the difficulty to sample the high dimensional and rugged free energy landscape of protein folding, in the search for the global minimum. Here, we address this second issue. We define the evolutionary and vibrational armonics subspace (EVA), a reduced sampling subspace that consists of a combination of evolutionarily favored directions, defined by the principal components of the structural variation within a homologous family, plus topologically favored directions, derived from the low frequency normal modes of the vibrational dynamics, up to 50 dimensions. This subspace is accurate enough so that the cores of most proteins can be represented within 1 A accuracy, and reduced enough so that Replica Exchange Monte Carlo (Hukushima and Nemoto, J Phys Soc Jpn 1996;65:1604-1608; Hukushima et al., Int J Mod Phys C: Phys Comput 1996;7:337-344; Mitsutake et al., J Chem Phys 2003;118:6664-6675; Mitsutake et al., J Chem Phys 2003;118:6676-6688) (REMC) can be applied. REMC is one of the best sampling methods currently available, but its applicability is restricted to spaces of small dimensionality. We show that the combination of the EVA subspace and REMC can essentially solve the optimization problem for backbone atoms in the reduced sampling subspace, even for rather rugged free energy landscapes. Applications and limitations of this methodology are finally discussed.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Proteínas/química , Proteínas/genética , Homología de Secuencia de Aminoácido , Bases de Datos de Proteínas , Evolución Molecular , Métodos , Conformación Proteica
20.
Curr Top Med Chem ; 6(1): 41-55, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16454757

RESUMEN

To be effective, a designed drug must discriminate successfully the macromolecular target from alternative structures present in the organism. The last few years have witnessed the emergence of different computational tools aimed to the understanding and modeling of this process at molecular level. Although still rudimentary, these methods are shaping a coherent approach to help in the design of molecules with high affinity and specificity, both in lead discovery and in lead optimization. It is the purpose of this review to illustrate the array of computational tools available to consider selectivity in the design process, to summarize the most relevant applications, and to sketch the challenges ahead.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Modelos Moleculares , Secuencia de Aminoácidos , Química Farmacéutica , Colina O-Acetiltransferasa/química , Colina O-Acetiltransferasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ligandos , Datos de Secuencia Molecular , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Relación Estructura-Actividad Cuantitativa , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...