Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Microbes Infect ; 26(1-2): 105243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380604

RESUMEN

Pteropine orthoreovirus (PRV) causes respiratory tract infections in humans. Despite its emergence as a zoonotic and respiratory virus, little is known about its cell tropism, which hampers progress in fully understanding its pathogenesis in humans. Hek293 cells are most susceptible to PRV infection, while HeLa cells are the least. Human cytokeratin 1 (CK1) was identified as the protein that interacts with PRV. The immunofluorescence assay and qPCR results revealed prior treatment with anti-CK1 may provide Hek293 cells protection against PRV. The KRT1-knockout Hek293 cells were less susceptible to PRV infection. Further study into the pathogenesis of PRV in humans is needed.


Asunto(s)
Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Animales , Humanos , Células HEK293 , Células HeLa , Queratinas , Infecciones por Reoviridae/patología
2.
Cell Biol Toxicol ; 39(6): 2501-2526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37755585

RESUMEN

Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Evasión Inmune , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Epigénesis Genética
3.
Front Microbiol ; 14: 1116143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846758

RESUMEN

Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.

4.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35954379

RESUMEN

Despite medical advancements, the prognosis of pancreatic ductal adenocarcinoma (PDAC) has not improved significantly over the past 50 years. By utilising the large-scale genomic datasets available from the Australia Pancreatic Cancer Project (PACA-AU) and The Cancer Genomic Atlas Project (TCGA-PAAD), we studied the immunophenotype of PDAC in silico and identified that tumours with high cytotoxic T lymphocytes (CTL) killing activity were associated with favourable clinical outcomes. Using the STRING protein-protein interaction network analysis, the identified differentially expressed genes with low CTL killing activity were associated with TWIST/IL-6R, HDAC5, and EOMES signalling. Following Connectivity Map analysis, we identified 44 small molecules that could restore CTL sensitivity in the PDAC cells. Further high-throughput chemical library screening identified 133 inhibitors that effectively target both parental and CTL-resistant PDAC cells in vitro. Since CTL-resistant PDAC had a higher expression of histone proteins and its acetylated proteins compared to its parental cells, we further investigated the impact of histone deacetylase inhibitors (HDACi) on CTL-mediated cytotoxicity in PDAC cells in vitro, namely SW1990 and BxPC3. Further analyses revealed that givinostat and dacinostat were the two most potent HDAC inhibitors that restored CTL sensitivity in SW1990 and BxPC3 CTL-resistant cells. Through our in silico and in vitro studies, we demonstrate the novel role of HDAC inhibition in restoring CTL resistance and that combinations of HDACi with CTL may represent a promising therapeutic strategy, warranting its further detailed molecular mechanistic studies and animal studies before embarking on the clinical evaluation of these novel combined PDAC treatments.

5.
Genes (Basel) ; 13(7)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35886067

RESUMEN

Rheumatoid arthritis (RA) is a lifelong, debilitating disease which incredibly impacts a patient's quality of life if not treated to the optimal target. The clinical response of tocilizumab, an interleukin-6 (IL-6) inhibitor, is associated with several gene polymorphisms, particularly targeting the IL-6 pathway. This systematic review and meta-analysis seeks to investigate genetic biomarkers that predict the treatment outcome of tocilizumab therapy in RA patients. After evaluating the quality of retrieved records, five studies were chosen to carry out a quantitative synthesis involving 591 participants. We analysed genetic markers of IL-6R single nucleotide polymorphism (SNP)s rs12083537, rs2228145 and rs4329505, FCGR3A, CD69, GALNT18 and FCGR2A. A plausible finding based on meta-analysis revealed that RA patients with homozygous AA genotype for rs12083537 polymorphism of the IL-6R gene demonstrate a better response to TCZ treatment as opposed to homozygous and heterozygous patients with the G allele. Nonetheless, limitations in evaluating the available studies by meta-analysis include a lack of studies with dissimilarities in study design and outcome definitions, small sample sizes with low statistical power and heterogeneity of cohorts, a restricted the number of tested SNPs and small effects for the selected variants. Inconsistent finding remains as a great challenge to forge ahead towards personalised medicine for RA management.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Anticuerpos Monoclonales Humanizados , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Marcadores Genéticos , Humanos , Interleucina-6/genética , Polimorfismo de Nucleótido Simple , Calidad de Vida
6.
World J Gastroenterol ; 28(18): 1934-1945, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35664961

RESUMEN

The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development. Regardless, it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses, thus allowing continuous tumor growth and development. Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer. Compared with other cancers, pancreatic cancer has a tumor microenvironment that can resist most treatment modalities, including emerging immunotherapy. Sadly, the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients, suggesting that pancreatic cancer has successfully evaded immunomodulation. In this review, we summarize the impact of genetic alteration and epigenetic modification (especially histone deacetylases, HDAC) on immune evasion in pancreatic cancer. HDAC overexpression significantly suppresses tumor suppressor genes, contributing to tumor growth and progression. We review the evidence on HDAC inhibitors in tumor eradication, improving T cells activation, restoring tumor immunogenicity, and modulating programmed death 1 interaction. We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.


Asunto(s)
Histona Desacetilasas , Neoplasias Pancreáticas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/genética , Humanos , Evasión Inmune , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Front Oncol ; 12: 840467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311066

RESUMEN

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.

8.
J Cell Mol Med ; 26(5): 1434-1444, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35106914

RESUMEN

Alzheimer's disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor-interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain-like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta-amyloid (Aß)-induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH-SY5Y human neuroblastoma cells treated with Aß 1-40 or Aß 1-42. We showed that Aß-induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL-dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aß-induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aß can potentially drive necroptosis in an RIPK1-MLKL-dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Síndromes de Neurotoxicidad , Anciano , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Apoptosis , Muerte Celular , Humanos , Ratones , Necroptosis , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163030

RESUMEN

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) family members integrate signals that affect proliferation, differentiation, survival, and migration in a cell context- and cell type-specific way. JNK and p38 MAPK activities are found upregulated in nasopharyngeal carcinoma (NPC). Studies have shown that activation of JNK and p38 MAPK signaling can promote NPC oncogenesis by mechanisms within the cancer cells and interactions with the tumor microenvironment. They regulate multiple transcription activities and contribute to tumor-promoting processes, ranging from cell proliferation to apoptosis, inflammation, metastasis, and angiogenesis. Current literature suggests that JNK and p38 MAPK activation may exert pro-tumorigenic functions in NPC, though the underlying mechanisms are not well documented and have yet to be fully explored. Here, we aim to provide a narrative review of JNK and p38 MAPK pathways in human cancers with a primary focus on NPC. We also discuss the potential therapeutic agents that could be used to target JNK and p38 MAPK signaling in NPC, along with perspectives for future works. We aim to inspire future studies further delineating JNK and p38 MAPK signaling in NPC oncogenesis which might offer important insights for better strategies in diagnosis, prognosis, and treatment decision-making in NPC patients.


Asunto(s)
Antineoplásicos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Humanos , Carcinoma Nasofaríngeo/enzimología , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/enzimología , Neoplasias Nasofaríngeas/patología
10.
Phytochemistry ; 193: 112988, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34717280

RESUMEN

Four undescribed cucurbitacins, designated as petiolaticins A-D, and four known cucurbitacins were isolated from the bark and leaves of Elaeocarpus petiolatus (Jack) Wall. Their chemical structures were elucidated based on detailed analyses of the NMR and MS data. The absolute configuration of petiolaticin A was also determined by X-ray diffraction analysis. Petiolaticin A represents a cucurbitacin derivative incorporating a 3,4-epoxyfuranyl-bearing side chain, while petiolaticin B possesses a furopyranyl unit fused to the tetracyclic cucurbitane core structure. Petiolaticins A, B, and D were evaluated in vitro against a panel of human breast, pancreatic, and colorectal cancer cell lines. Petiolaticin A exhibited the greatest cytotoxicity against the MDA-MB-468, MDA-MB-231, MCF-7, and SW48 cell lines (IC50 7.4, 9.2, 9.3, and 4.6 µM, respectively). Additionally, petiolaticin D, 16α,23α-epoxy-3ß,20ß-dihydroxy-10αH,23ßH-cucurbit-5,24-dien-11-one, and 16α,23α-epoxy-3ß,20ß-dihydroxy-10αH,23ßH-cucurbit-5,24-dien-11-one 3-O-ß-D-glucopyranoside were tested for their ability to inhibit cell entry of a pseudotyped virus bearing the hemagglutinin envelope protein of a highly pathogenic avian influenza virus. Petiolaticin D showed the highest inhibition (44.3%), followed by 16α,23α-epoxy-3ß,20ß-dihydroxy-10αH,23ßH-cucurbit-5,24-dien-11-one (21.0%), and 16α,23α-epoxy-3ß,20ß-dihydroxy-10αH,23ßH-cucurbit-5,24-dien-11-one 3-O-ß-D-glucopyranoside showed limited inhibition (9.0%). These preliminary biological assays have demonstrated that petiolaticins A and D possess anticancer and antiviral properties, respectively, which warrant for further investigations.


Asunto(s)
Elaeocarpaceae , Triterpenos , Animales , Cucurbitacinas , Estructura Molecular , Extractos Vegetales , Hojas de la Planta , Triterpenos/farmacología , Pseudotipado Viral
11.
Front Mol Biosci ; 8: 748470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820423

RESUMEN

Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.

12.
Nanomaterials (Basel) ; 11(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34684908

RESUMEN

Recent advancements in nanotechnology have improved our understanding of cancer treatment and allowed the opportunity to develop novel delivery systems for cancer therapy. The biological complexities of cancer and tumour micro-environments have been shown to be highly challenging when treated with a single therapeutic approach. Current co-delivery systems which involve delivering small molecule drugs and short-interfering RNA (siRNA) have demonstrated the potential of effective suppression of tumour growth. It is worth noting that a considerable number of studies have demonstrated the synergistic effect of co-delivery systems combining siRNA and small molecule drugs, with promising results when compared to single-drug approaches. This review focuses on the recent advances in co-delivery of siRNA and small molecule drugs. The co-delivery systems are categorized based on the material classes of drug carriers. We discuss the critical properties of materials that enable co-delivery of two distinct anti-tumour agents with different properties. Key examples of co-delivery of drug/siRNA from the recent literature are highlighted and discussed. We summarize the current and emerging issues in this rapidly changing field of research in biomaterials for cancer treatments.

13.
J Nat Prod ; 84(8): 2272-2281, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34342431

RESUMEN

Seven new tropane alkaloids, including five monomeric (1-5), one dimeric (6), and one trimeric (7) 3α-nortropane ester, along with two known monomeric nortropane alkaloids (8 and 9), were isolated from the leaves and bark of Pellacalyx saccardianus. Their structures, including the absolute configuration of the enantiomeric pair of (±)-6, were elucidated by comprehensive spectroscopic analyses. Alkaloids 6 and 7 showed cytotoxicity toward human pancreatic cancer cell lines (AsPC-1, BxPC3, PANC-1, and SW1990). Alkaloids 1, 4, and 9 induced a smooth muscle relaxation effect comparable to that of atropine (Emax 106.1 ± 7.5%, 97.0 ± 5.2%, 100.9 ± 1.4%, 111.7 ± 1.7%, respectively) on isolated rat tracheal rings.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Músculo Liso/efectos de los fármacos , Rhizophoraceae/química , Tropanos/farmacología , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Humanos , Técnicas In Vitro , Malasia , Masculino , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Corteza de la Planta/química , Hojas de la Planta/química , Ratas , Ratas Sprague-Dawley , Tráquea/efectos de los fármacos , Tropanos/aislamiento & purificación
15.
J Cell Mol Med ; 25(17): 8187-8200, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34322995

RESUMEN

Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)-negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.


Asunto(s)
Azetidinas/farmacología , Docetaxel/farmacología , Janus Quinasa 1/antagonistas & inhibidores , Nitrilos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Purinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Sulfonamidas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Masculino
16.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34298701

RESUMEN

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein-Barr virus infection, individual's genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.

17.
Rep Biochem Mol Biol ; 9(4): 417-425, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33969135

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells. METHODS: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells. RESULTS: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKß and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group. CONCLUSION: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.

18.
Cancers (Basel) ; 13(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918087

RESUMEN

Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1ß (IL-1ß) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.

19.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669327

RESUMEN

Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end up in landfill, oceans and other waterways. These plastics are discarded in vast numbers each day, and the breaking down of the plastics from micro- to nano-sizes has led to worries about how toxic these plastics are to the environment and humans. While, there are several earlier studies reported the effects of micro- and nano-plastics have on the environment, there is scant research into their impact on the human body at subcellular or molecular levels. In particular, the potential of how nano-plastics move through the gut, lungs and skin epithelia in causing systemic exposure has not been examined thoroughly. This review explores thoroughly on how nanoplastics are created, how they behave/breakdown within the environment, levels of toxicity and pollution of these nanoplastics, and the possible health impacts on humans, as well as suggestions for additional research. This paper aims to inspire future studies into core elements of micro- and nano-plastics, the biological reactions caused by their specific and unusual qualities.

20.
Surg Oncol ; 37: 101536, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33677364

RESUMEN

INTRODUCTION: Fibroadenomas of the breast present as two phenotypic variants. The usual variety is 5 cm or less in diameter and there is another large variant called giant fibroadenoma which is greater than 5 cm in diameter. Despite of its large size, it is not malignant. The aim of our study is to determine whether this large variant is different from the usual fibroadenoma in terms of its biological pathways and biomarkers. METHODS: mRNA was extracted from 44 fibroadenomas and 36 giant fibroadenomas, and transcriptomic profiling was performed to identify up- and down-regulated genes in the giant fibroadenomas as compared to the fibroadenomas. RESULTS: A total of 40 genes were significantly up-regulated and 18 genes were significantly down-regulated in the giant fibroadenomas as compared to the fibroadenomas of the breast. The top 5 up-regulated genes were FN1, IL3, CDC6, FGF8 and BMP8A. The top 5 down-regulated genes were TNR, CDKN2A, COL5A1, THBS4 and BMPR1B. The differentially expressed genes (DEGs) were found to be associated with 5 major canonical pathways involved in cell growth (PI3K-AKT, cell cycle regulation, WNT, and RAS signalling) and immune response (JAK-STAT signalling). Further analyses using 3 supervised learning algorithms identified an 8-gene signature (FN1, CDC6, IL23A, CCNA1, MCM4, FLT1, FGF22 and COL5A1) that could distinguish giant fibroadenomas from fibroadenomas with high predictive accuracy. CONCLUSION: Our findings demonstrated that the giant fibroadenomas are biologically distinct to fibroadenomas of the breast with overexpression of genes involved in the regulation of cell growth and immune response.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/fisiología , Fibroadenoma/genética , Fibroadenoma/patología , Transducción de Señal/fisiología , Adolescente , Adulto , Algoritmos , Colágeno Tipo V , Femenino , Factores de Crecimiento de Fibroblastos , Fibronectinas , Perfilación de la Expresión Génica , Humanos , Subunidad p19 de la Interleucina-23 , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...