Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11220, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755206

RESUMEN

The corpus luteum (CL) is a transient endocrine gland that plays a crucial role in establishing and maintaining pregnancy. Although autophagy and apoptosis have been suggested as cooperative mechanisms, their interaction within the CL of pregnant mammals has not been thoroughly investigated. To understand the collaborative function of autophagy and apoptosis in the CL, we analyzed both mechanisms during pregnancy in the South American plains vizcacha, Lagostomus maximus. This rodent undergoes a decline in progesterone levels during mid-gestation, a reactivation of the hypothalamus-hypophysis-gonadal axis, and the incorporation of new functional secondary CL. Our analysis of autophagy markers BECLIN 1 (BECN1), SEQUESTOSOME1 (SQSTM1), Microtubule-associated protein light chain 3 (LC3B), and lysosomal-associated membrane protein 1 (LAMP1) and anti- and pro-apoptotic markers BCL2 and ACTIVE CASPASE 3 (A-C3) revealed interactive behaviors between both processes. Healthy primary and secondary CL exhibited positive expression of BECN1, SQSTM1, LC3B, and LAMP1, while regressed CL displayed enhanced expression of these autophagy markers along with nuclear A-C3. Transmission electron microscopy revealed a significant formation of autophagic vesicles in regressed CL during full-term pregnancy, whereas healthy CL exhibited a low number of autophagy vesicles. The co-localization between LC3B and SQSTM1 and LC3B with LAMP1 was observed in both healthy and regressed CL during pregnancy, while co-localization of BECN1 and BCL2 was only detected in healthy CL. LC3B and ACTIVE CASPASE 3 co-localization were detected in a subset of luteal cells within the regressing CL. We propose that autophagy could act as a survival mechanism in the CL, allowing the pregnancy to progress until full-term, while also serving as a mechanism to eliminate remnants of regressed CL, thereby providing the necessary space for subsequent follicular maturation.


Asunto(s)
Apoptosis , Autofagia , Cuerpo Lúteo , Roedores , Femenino , Animales , Embarazo , Cuerpo Lúteo/metabolismo
2.
PLoS One ; 15(5): e0232819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469908

RESUMEN

Follicular atresia is a cell death event that occurs in the great majority of follicles before ovulation in the mature mammalian ovary. Germ cell loss has been mainly associated to apoptosis although autophagy also seems to be at play. Aimed to increase our understanding on the possible cooperating role of autophagy and apoptosis in follicular atresia and/or follicular survival, we analyzed both programmed cell death mechanisms in a rodent model, the South American plains vizcacha, Lagostomus maximus. Female vizcacha shows highly suppressed apoptosis-dependent follicular atresia in the adult ovary, with continuous folliculogenesis and massive polyovulation. This strategy of massive ovulation requires a permanent remodeling of the ovarian architecture to maintain the availability of quiescent primordial follicles throughout the individual's reproductive lifespan. We report here our analysis of autophagy (BECN1, LAMP1 and LC3B-I/II) and apoptosis (BCL2 and ACTIVE CASPASE-3) markers which revealed interactive behaviors between both processes, with autophagy promoting survival or cell death depending on the ovarian structure. Strong BECN1, LC3B-II and LAMP1 staining was observed in atretic follicles and degenerating corpora lutea that also expressed nuclear ACTIVE CASPASE-3. Healthy follicles showed a slight expression of autophagy proteins but a strong expression of BCL2 and no detectable ACTIVE CASPASE-3. Transmission electron microscopy revealed a high formation of autophagosomes, autolysosomes and lysosomes in atretic follicles and degenerating corpora lutea and a low number of autophagic vesicles in normal follicles. The co-expression of LC3B-BECN1, LC3B-LAMP1 and LC3B-ACTIVE CASPASE-3 was only detected in atretic follicles and degenerating corpora lutea, while co-expression of BCL2-BECN1 was only observed in normal follicles. We propose that autophagy could act as a mechanism to eliminate altered follicles and remnant corpora lutea providing the necessary space for maturation of primordial follicles that continuously enter the growing follicular pool to sustain massive ovulation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Autofagia/genética , Roedores/genética , Animales , Autofagosomas/metabolismo , Cuerpo Lúteo/crecimiento & desarrollo , Cuerpo Lúteo/metabolismo , Femenino , Atresia Folicular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Ovario/crecimiento & desarrollo , Roedores/crecimiento & desarrollo
3.
J Steroid Biochem Mol Biol ; 200: 105627, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32070756

RESUMEN

The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.


Asunto(s)
Estradiol/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/efectos de los fármacos , Progesterona/farmacología , Animales , Estradiol/sangre , Femenino , Hormona Liberadora de Gonadotropina/genética , Sistema Hipotálamo-Hipofisario , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Ovariectomía , Ovario , Progesterona/sangre , Roedores
4.
Gen Comp Endocrinol ; 250: 162-174, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645634

RESUMEN

In mammals, hormonal regulation during gestation is crucial for embryo implantation and pregnancy success. This regulation is controlled through the level of progesterone (P4) that blocks the activity of the hypothalamic-hypophyseal-gonadal (HHG) axis. Previous studies in the pregnant South American plains vizcacha, Lagostomus maximus, have shown that the HHG axis activates around mid-gestation, promoting pre-ovulatory follicle formation. However, the characterization of the hormonal dynamics throughout gestation and its ovarian correlation has not been studied in depth. We studied the ovarian dynamics of L. maximus and its correlation with the hormonal profile during gestation, analyzing serum levels of P4, 17ß-estradiol (E2), 4Δ-androstenedione (A4), luteinizing hormone (LH) and follicle stimulating hormone (FSH) as well as the ovarian distribution and expression of their receptors. Additionally, we have analyzed the folliculogenesis and accessory corpora lutea (ACL) formation. P4 showed two concentration peaks reaching its highest level at mid-gestation decreasing at 91-100days post-coitum. P4 decrease is followed by an increase of circulating levels of A4, E2, FSH and LH and with an elevated number of antral/pre-ovulatory follicles which express PGR, ESR1, ESR2, AR, LHR and FSHR. In addition, ACL with oocyte retention and cytoplasmic lipid droplets in luteal cells were detected at this time point. These results show that in L. maximus the decrease of P4 level from mid-gestation enables follicular recruitment until pre-ovulatory stage and the development of functional ACL.


Asunto(s)
Ecosistema , Hormonas/metabolismo , Folículo Ovárico/metabolismo , Roedores/metabolismo , Animales , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/ultraestructura , Estradiol/sangre , Femenino , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/metabolismo , Folículo Ovárico/citología , Periodo Posparto , Embarazo , Receptores de Superficie Celular/metabolismo
5.
Sci Rep ; 7(1): 594, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377629

RESUMEN

The gene network controlling primordial germ cell (PGC) specification in eutherian mammals has been exhaustively investigated in mice. The egg-cylinder morphology of the mouse embryo is the key event enabling inductive signals from the extra-embryonic ectoderm (ExE) to specify epiblast cells as PGCs early on. We investigated the embryonic development and the spatiotemporal localization of PGC-associated proteins in the basal Hystricognathi rodent Lagostomus maximus. L. maximus develops through a flat-disc epiblast far apart from the ExE. In the primitive streak stage, OCT4-positive cells are detected in the posterior pole of the embryo disc in the mesoderm of the proximal epiblast. In the neural plate stage, a reduced 8 to 12 OCT4-positive cell population transiently expresses FRAGILIS, STELLA and SOX17 in the posterior streak. Soon after translocation to the hindgut, pluripotent OCT4 cells start expressing VASA, and then, STELLA and FRAGILIS are turned on during migration toward the genital ridge. L. maximus shows a spatiotemporal pattern of PGC-associated markers divergent from the early PGC restriction model seen in mice. This pattern conforms to alternative models that are based on a pluripotent population in the embryonic axis, where PGCs are specified later during development.


Asunto(s)
Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Roedores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica
6.
J Mol Histol ; 48(3): 259-273, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28317066

RESUMEN

Gonadotropin-releasing hormone (GnRH) is the key regulator of the hypothalamic-pituitary-gonadal axis. Estradiol (E2) affects GnRH synthesis and delivery. Hypothalamic estrogen receptors (ER) modulate GnRH expression acting as transcription factors. The South American plains vizcacha, Lagostomus maximus, is able to ovulate up to 800 oocytes per reproductive cycle, and shows continuous folliculogenesis with pre-ovulatory follicle formation and an ovulatory event at mid-gestation. The aim of this work was to analyze the hypothalamic expression of ER in the vizcacha at different gestational time-points, and its relationship with GnRH expression, serum luteinizing hormone (LH) and E2. The hormonal pattern of mid-gestating vizcachas was comparable to ovulating-females with significant increases in GnRH, LH and E2. Hypothalamic protein and mRNA expression of ERα varied during pregnancy with a significant increase at mid-gestation whereas ERß mRNA expression did not show significant variations. Hypothalamic immunolocalization of ERα was observed in neurons of the diagonal band of Brocca, medial preoptic area (mPOA), periventricular, suprachiasmatic, supraoptic (SON), ventromedial, and arcuate nuclei, and medial eminence, with a similar distribution throughout gestation. In addition, all GnRH neurons of the mPOA and SON showed ERα expression with no differences across the reproductive status. The correlation between GnRH and ERα at mid-gestation, and their co-localization in the hypothalamic neurons of the vizcacha, provides novel information compared with other mammals suggesting a direct action of estrogen as part of a differential reproductive strategy to assure GnRH synthesis during pregnancy.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/citología , Neuronas/química , Animales , Estradiol/metabolismo , Femenino , Edad Gestacional , Hormona Luteinizante/sangre , Embarazo , Roedores
7.
Biol Reprod ; 89(5): 115, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089203

RESUMEN

In mammals, elevated levels of progesterone (P4) throughout gestation maintain a negative feedback over the hypothalamic-hypophyseal-gonadal (H-H-G) axis, avoiding preovulatory follicular growth and preventing ovulation. Recent studies showed that in the South American plains vizcacha (Lagostomus maximus) folliculogenesis progresses to preovulatory stages during gestation, and an ovulatory process seems to occur at midgestation. The aim of this work was to analyze hypothalamic gonadotropin-releasing hormone (GnRH) and P4 receptors (PR) expression and luteinizing hormone (LH) secretion and correlate these with the functional state of the ovary in nonovulating and ovulating females and gestating females with special emphasis in the supposedly ovulating females at midgestation. We investigated P4 and LH serum levels as well as the distribution, localization, and expression of PR and GnRH in the hypothalamus of L. maximus at different time points during gestation and in nongestating, ovulating and nonovulating, females. A significant increment in GnRH, P4, and LH was detected in midpregnant vizcachas with respect to early-pregnant and to ovulating females. PR was also significantly increased in midpregnant animals. PR was detected in neurons of the preoptic and hypothalamic areas. Coexistence of both PR and GnRH in neurons of medial preoptic area and supraoptic nucleus was detected. Midpregnant animals showed increased number of PR immunoreactive cells at median eminence, localized adjacently to GnRH immunoreactive fibers. High expression of hypothalamic GnRH and PR, despite an increased level of P4, was correlated with the presence of antral, preovulatory follicles, and luteinized unruptured follicles at midgestation that suggest a possible role of the H-H-G axis in the modulation of ovulation during gestation in L. maximus.


Asunto(s)
Hormona Liberadora de Gonadotropina/genética , Hipotálamo/metabolismo , Preñez , Receptores de Progesterona/genética , Roedores/genética , Animales , Femenino , Edad Gestacional , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Ovulación/fisiología , Embarazo , Preñez/genética , Preñez/metabolismo , Receptores de Progesterona/metabolismo , Roedores/metabolismo , América del Sur
8.
J Reprod Dev ; 58(6): 629-35, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22813597

RESUMEN

Androgens and androgen receptor play a critical role in spermatogenesis and fertility in mammals, and estrogens and their receptors contribute to regulation of testicular function through initiation and maintenance of spermatogenesis and germ cell division and survival. However, results from different species are still far from establishing a clear understanding of these receptors in the different cell types from the testis. We analyzed the expression of androgen receptor, estrogen receptors α and ß and aromatase protein by immunohistochemistry and real-time PCR, in relation to proliferation followed by the expression of proliferation cell nuclear antigen (PCNA) and germinal identity by VASA protein, in fetal, perinatal, prepubertal and adult testes of Lagostomus maximus, a rodent with sustained germ cell proliferation and an increasing number of OCT-4-expressing gonocytes in the developing ovary. AR expression was restricted to Leydig cells and peritubular cells before sexual maturity, at which point it also became expressed in Sertoli cells. ERα and ERß were expressed in seminiferous tubules and the interstitium, respectively, in both fetal and prepubertal testes. In adult testes, both ERα and ERß co-localized in Leydig and peritubular cells. The aromatase enzyme, which converts androgenic precursors into estrogens, was detectable in all developmental stages analyzed and was restricted to Leydig cells. PCNA remained high until sexual maturity. ERα nuclear detection in germ cells and AR in Leydig cells in PCNA-positive cells suggest the possibility of a stimulatory effect of estrogens on spermatogonia proliferation. This effect might explain the increase found in VASA-expressing cells in the adult testis.


Asunto(s)
Aromatasa/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Roedores/metabolismo , Testículo/metabolismo , Animales , Proliferación Celular , Células Germinativas/fisiología , Masculino , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/metabolismo , Roedores/crecimiento & desarrollo , Testículo/crecimiento & desarrollo
9.
Biocell ; 35(2): 37-42, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22128588

RESUMEN

Lagostomus maximus is a notable mammalian model for reproductive studies. Females have an extremely high ovulation rate, which is due to down-regulation of the follicular apoptosis pathway, which ensures a large pool of developing follicles. This large pool is supported by the convoluted anatomy of the mature ovary, whose germinal tissue is found in irregularly curved ridges throughout the cortex. Medullary tissue is restricted to a minimum. Lyso Tracker Red reconstruction under confocal laser scanning microscopy was used to recognize and measure all follicular stages from primordial to antral. Unlike most mammals in which early primordial follicles are just found in fetal life, the adult ovary shows regions packed with early primordial follicles. Follicle size ranged from 24 to 316 microm. We discuss the relationships of L. maximus follicles size with regard to other species of mammals and propose that the physiology of the adult viscacha ovary obeys to a neoteny process in the evolution of this species.


Asunto(s)
Microscopía Confocal , Folículo Ovárico/ultraestructura , Ovario/ultraestructura , Roedores/crecimiento & desarrollo , Animales , Femenino , Folículo Ovárico/citología , Ovario/citología
10.
Biocell ; 35(2): 37-42, Aug. 2011. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-639623

RESUMEN

Lagostomus maximus is a notable mammalian model for reproductive studies. Females have an extremely high ovulation rate, which is due to down-regulation of the follicular apoptosis pathway, which ensures a large pool of developing follicles. This large pool is supported by the convoluted anatomy of the mature ovary, whose germinal tissue is found in irregularly curved ridges throughout the cortex. Medullary tissue is restricted to a minimum. Lyso Tracker Red reconstruction under confocal laser scanning microscopy was used to recognize and measure all follicular stages from primordial to antral. Unlike most mammals in which early primordial follicles are just found in fetal life, the adult ovary shows regions packed with early primordial follicles. Follicle size ranged from 24 to 316 µm. We discuss the relationships of L. maximus follicles size with regard to other species of mammals and propose that the physiology of the adult viscacha ovary obeys to a neoteny process in the evolution of this species.


Asunto(s)
Animales , Femenino , Microscopía Confocal , Folículo Ovárico/ultraestructura , Ovario/ultraestructura , Roedores/crecimiento & desarrollo , Folículo Ovárico/citología , Ovario/citología
11.
Biol Reprod ; 79(2): 240-6, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18448845

RESUMEN

The South American plains vizcacha, Lagostomus maximus, displays an exceptional ovulation rate of up to 800 eggs per cycle, the highest rate recorded for a mammal. Massive polyovulation arises from the overexpression of the apoptosis-inhibiting BCL2 gene leading to a suppression of apoptotic pathways responsible for follicular atresia in mammals. We analyzed the ovarian histology, ovarian apoptosis, and apoptosis-related protein expression with special emphasis in corpora lutea throughout the 5-mo-long gestation period, at parturition day and early postpartum, in L. maximus. Corpora lutea were abundant throughout gestation with no sign of structural regression even at the end of gestation. Both immunohistochemistry and Western blot analysis showed strong signals for apoptosis-inhibiting BCL2 protein, whereas the proapoptotic BAX protein was just detected in isolated luteal cells in gestating females and postpartum females. Apoptosis-associated DNA fragmentation detected by TUNEL was very scarce and occasional and correlated with BAX detection in luteal cells. Marked expression of progesterone and alpha-estrogen receptors in luteal cells was found at early, mid-, and late gestation as well as at parturition day and early postpartum samples. Additionally, serum level of progesterone increased markedly to reach maximal values at late gestation and decreasing at parturition to levels found at early gestation, suggesting that corpora lutea remained functional throughout gestation. These results point out that the unusual ovarian environment of L. maximus in which germ cell demise is abolished through antiapoptotic BCL2 gene overexpression also preserves structural integrity and functionality of corpora lutea during the whole gestation. Overexpression of antiapoptotic BCL2 gene may represent a strategy for an essential need of ovary and corpora lutea in order to maintain pregnancy until term.


Asunto(s)
Apoptosis/fisiología , Mantenimiento del Cuerpo Lúteo/fisiología , Ovario/fisiología , Preñez , Roedores/fisiología , Animales , Cuerpo Lúteo/fisiología , Daño del ADN/fisiología , Regulación hacia Abajo/fisiología , Femenino , Células Lúteas/metabolismo , Ovario/citología , Ovulación/fisiología , Embarazo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Roedores/genética , Roedores/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...