Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Rep ; 41(5): 834-859, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323463

RESUMEN

Covering: up to 2023Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.


Asunto(s)
Brassicaceae , Semillas , Semillas/metabolismo , Semillas/química , Brassicaceae/metabolismo , Brassicaceae/química , Estructura Molecular , Proteínas de Plantas/metabolismo
2.
C R Biol ; 345(4): 61-110, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36847120

RESUMEN

Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.


L'élucidation des mécanismes qui contrôlent le développement, le métabolisme et la physiologie des graines est une question fondamentale en biologie. Michel Caboche a longtemps été un catalyseur de la recherche en biologie des graines en France jusqu'à son décès prématuré l'année dernière. Pour honorer sa mémoire, nous avons mis à jour une revue écrite sous sa coordination en 2010 intitulée « Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research ¼. Cette revue englobait différents aspects moléculaires du développement des graines, de l'accumulation des réserves, de la dormance et de la germination, qui sont étudiés dans le laboratoire créé par M. Caboche. Nous avons étendu la portée de cette revue pour mettre en évidence des approches expérimentales originales mises en œuvre dans le domaine au cours de la dernière décennie, telles que les approches omiques visant à étudier le contrôle de l'expression des gènes, les modifications des protéines, les métabolites primaires et spécialisés au niveau des tissus ou même des cellules, tout en tenant compte de la biodiversité des graines et de l'impact de l'environnement sur leur qualité.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Semillas/genética , Biología Molecular , Biología , Francia , Germinación/genética , Latencia en las Plantas/genética , Regulación de la Expresión Génica de las Plantas
4.
Prog Lipid Res ; 85: 101138, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774919

RESUMEN

Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon­carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.


Asunto(s)
Ácidos Grasos Monoinsaturados , Plantas , Ácido Graso Desaturasas , Ácidos Grasos , Aceites de Plantas , Semillas
5.
Plants (Basel) ; 10(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34371670

RESUMEN

Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.

6.
Genes (Basel) ; 12(5)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063415

RESUMEN

HEAT SHOCK FACTOR A2 (HSFA2) is a regulator of multiple environmental stress responses required for stress acclimation. We analyzed HSFA2 co-regulated genes and identified 43 genes strongly co-regulated with HSFA2 during multiple stresses. Motif enrichment analysis revealed an over-representation of the site II element (SIIE) in the promoters of these genes. In a yeast 1-hybrid screen with the SIIE, we identified the closely related R2R3-MYB transcription factors TT2 and MYB5. We found overexpression of MYB5 or TT2 rendered plants heat stress tolerant. In contrast, tt2, myb5, and tt2/myb5 loss of function mutants showed heat stress hypersensitivity. Transient expression assays confirmed that MYB5 and TT2 can regulate the HSFA2 promoter together with the other members of the MBW complex, TT8 and TRANSPARENT TESTA GLABRA 1 (TTG1) and that the SIIE was involved in this regulation. Transcriptomic analysis revealed that TT2/MYB5 target promoters were enriched in SIIE. Overall, we report a new function of TT2 and MYB5 in stress resistance and a role in SIIE-mediated HSFA2 regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Respuesta al Choque Térmico , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Mutación con Pérdida de Función , Semillas/genética , Semillas/crecimiento & desarrollo , Transcriptoma
7.
Nat Commun ; 11(1): 6191, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273474

RESUMEN

In plants, light-dependent activation of de novo fatty acid synthesis (FAS) is partially mediated by acetyl-CoA carboxylase (ACCase), the first committed step for this pathway. However, it is not fully understood how plants control light-dependent FAS regulation to meet the cellular demand for acyl chains. We report here the identification of a gene family encoding for three small plastidial proteins of the envelope membrane that interact with the α-carboxyltransferase (α-CT) subunit of ACCase and participate in an original mechanism restraining FAS in the light. Light enhances the interaction between carboxyltransferase interactors (CTIs) and α-CT, which in turn attenuates carbon flux into FAS. Knockouts for CTI exhibit higher rates of FAS and marked increase in absolute triacylglycerol levels in leaves, more than 4-fold higher than in wild-type plants. Furthermore, WRINKLED1, a master transcriptional regulator of FAS, positively regulates CTI1 expression by direct binding to its promoter. This study reveals that in addition to light-dependent activation, "envelope docking" of ACCase permits fine-tuning of fatty acid supply during the plant life cycle.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Arabidopsis/metabolismo , Ácidos Grasos/biosíntesis , Membranas Intracelulares/metabolismo , Acetatos/metabolismo , Acetil-CoA Carboxilasa/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Radioisótopos de Carbono , Regulación del Desarrollo de la Expresión Génica , Luz , Simulación del Acoplamiento Molecular , Plastidios/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protoplastos/metabolismo
8.
Plant Cell ; 32(11): 3613-3637, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32958563

RESUMEN

The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Oxigenasas de Función Mixta/genética , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/metabolismo , Mutación , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Sci ; 296: 110471, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32540001

RESUMEN

Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.


Asunto(s)
Fenoles/metabolismo , Semillas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/fisiología , Redes y Vías Metabólicas , Fenoles/química , Semillas/fisiología
10.
Plant J ; 103(2): 660-676, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246506

RESUMEN

Acyl lipids are important constituents of the plant cell. Depending on the cell type, requirements in acyl lipids vary greatly, implying a tight regulation of fatty acid and lipid metabolism. The discovery of the WRINKLED1 (WRI1) transcription factors, members of the AP2-EREBP (APETALA2-ethylene-responsive element binding protein) family, has emphasized the importance of transcriptional regulation for adapting the rate of acyl chain production to cell requirements. Here, we describe the identification of another activator of the fatty acid biosynthetic pathway, the Arabidopsis MYB92 transcription factor. This MYB and all the members of the subgroups S10 and S24 of MYB transcription factors can directly activate the promoter of BCCP2 that encodes a component of the fatty acid biosynthetic pathway. Two adjacent MYB cis-regulatory elements are essential for the binding and activation of the BCCP2 promoter by MYB92. Overexpression of MYB92 or WRI1 in Nicotiana benthamiana induces the expression of fatty acid biosynthetic genes but results in the accumulation of different types of acyl lipids. In the presence of WRI1, triacylglycerol biosynthetic enzymes coded by constitutively expressed genes efficiently channel the excess fatty acids toward reserve lipid accumulation. By contrast, MYB92 activates both fatty acid and suberin biosynthetic genes; hence, the remarkable increase in suberin monomers measured in leaves expressing MYB92. These results provide additional insight into the molecular mechanisms that control the biosynthesis of an important cell wall-associated acylglycerol polymer playing critical roles in plants.


Asunto(s)
Ácidos Grasos/biosíntesis , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Lípidos/biosíntesis , Plantas Modificadas Genéticamente
11.
Plant Cell ; 31(10): 2370-2385, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31439805

RESUMEN

Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.


Asunto(s)
Brassica napus/metabolismo , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/enzimología , Brassica napus/genética , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/metabolismo , Ligasas/genética , Ligasas/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Mutación , Fenotipo , Mucílago de Planta/biosíntesis , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Aceite de Brassica napus/metabolismo , Semillas/química , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Transcriptoma/genética , Ubiquitina-Proteína Ligasas/genética
12.
BMC Plant Biol ; 19(1): 304, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291882

RESUMEN

BACKGROUND: In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Communication between these compartments is supposed to be tightly regulated at their interfaces. Here, we characterize the deposition pattern of an apoplastic lipid barrier between the maternal inner integument and fertilization products in Arabidopsis thaliana seeds. RESULTS: We demonstrate that an apoplastic lipid barrier is first deposited by the ovule inner integument and undergoes de novo cutin deposition following central cell fertilization and relief of the FERTILIZATION INDEPENDENT SEED Polycomb group repressive mechanism. In addition, we show that the WIP zinc-finger TRANSPARENT TESTA 1 and the MADS-Box TRANSPARENT TESTA 16 transcription factors act maternally to promote its deposition by regulating cuticle biosynthetic pathways. Finally, mutant analyses indicate that this apoplastic barrier allows correct embryo sliding along the seed coat. CONCLUSIONS: Our results revealed that the deposition of a cutin apoplastic barrier between seed maternal and zygotic tissues is part of the seed coat developmental program.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Lípidos de la Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
13.
Front Plant Sci ; 10: 1801, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117351

RESUMEN

Seeds have greatly contributed to the successful colonization of land by plants. Compared to spores, seeds carry nutrients, rely less on water for germination, provide a higher degree of protection against biotic and abiotic stresses, and can disperse in different ways. Such advantages are, to a great extent, provided by the seed coat. The evolution of a multi-function seed-coat is inheritably linked to the evolution of tissue polarity, which allows the development of morphologically and functionally distinct domains. Here, we show that the endothelium, the innermost cell layer of the seed coat, displays distinct morphological features along the proximal-distal axis. Furthermore, we identified a TRANSPARENT TESTA transcriptional module that contributes to establishing endothelium polarity and responsiveness to fertilization. Finally, we characterized its downstream gene pathway by whole-genome transcriptional analyses. We speculate that such a regulatory module might have been responsible for the evolution of morphological diversity in seed shape, micropylar pore formation, and cuticle deposition.

14.
Plant Reprod ; 31(3): 327-342, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30056618

RESUMEN

KEY MESSAGE: Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.


Asunto(s)
Semillas/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Lignanos/metabolismo , Lignina/metabolismo , Polisacáridos/metabolismo
16.
Plant Methods ; 14: 10, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434651

RESUMEN

BACKGROUND: Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. METHODS AND RESULTS: We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. CONCLUSION: This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.

17.
PLoS One ; 13(1): e0192156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29381741

RESUMEN

Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination.


Asunto(s)
Arabidopsis/genética , Ácidos Grasos/metabolismo , Genes de Plantas , Semillas/genética , Arabidopsis/embriología , Arabidopsis/metabolismo , Germinación , Regiones Promotoras Genéticas
18.
PLoS One ; 12(11): e0188148, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29141031

RESUMEN

The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization.


Asunto(s)
Arabidopsis/embriología , Semillas/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo
19.
Plant Signal Behav ; 12(8): e1339000, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28613109

RESUMEN

The seed, the reproductive unit of angiosperms, is physically protected by the seed coat. The seed coat develops from the ovule integuments after fertilization. The Arabidopsis ovule integuments are made of 5-6 cell layers of epidermal and sub-epidermal origin. The growth of the epidermal integument cell layers responds to an endosperm signal mediated by the AGAMOUS-LIKE 62 MADS box transcription factor with limited embryo contribution. By contrast, the sub-epidermal integument cell layers require the embryo to expand whereas the role of the endosperm is still unclear. Here, we analyzed the development of the sub-epidermal integument cell layers in agl62 mutant seeds, which undergo premature endosperm cellularization and arrest. Our data suggest that embryo and endosperm are both necessary to trigger the expansion of the sub-epidermal integument cell layers.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Endospermo/metabolismo , Epidermis de la Planta/citología , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Epidermis de la Planta/metabolismo , Semillas/citología , Semillas/metabolismo
20.
Development ; 144(8): 1490-1497, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28348169

RESUMEN

Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products - embryo and endosperm - and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization.


Asunto(s)
Arabidopsis/citología , Arabidopsis/embriología , Tipificación del Cuerpo , Desarrollo de la Planta , Epidermis de la Planta/citología , Epidermis de la Planta/embriología , Semillas/embriología , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Fertilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...