Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(22): e2300526, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246284

RESUMEN

Functionalized porous carbons are central to various important applications such as energy storage and conversion. Here, a simple synthetic route to prepare oxygen-rich carbon nitrides (CNOs) decorated with stable Ni and Fe-nanosites is demonstrated. The CNOs are prepared via a salt templating method using ribose and adenine as precursors and CaCl2 ·2H2 O as a template. The formation of supramolecular eutectic complexes between CaCl2 ·2H2 O and ribose at relatively low temperatures facilitates the formation of a homogeneous starting mixture, promotes the condensation of ribose through the dehydrating effect of CaCl2 ·2H2 O to covalent frameworks, and finally generates homogeneous CNOs. As a specific of the recipe, the condensation of the precursors at higher temperatures and the removal of water promotes the recrystallization of CaCl2 (T < Tm = 772 °C), which then acts as a hard porogen. Due to salt catalysis, CNOs with oxygen and nitrogen contents as high as 12 and 20 wt%, respectively, can be obtained, while heteroatom content stayed about unchanged even at higher temperatures of synthesis, pointing to the extraordinarily high stability of the materials. After decorating Ni and Fe-nanosites onto the CNOs, the materials exhibit high activity and stability for electrochemical oxygen evolution reaction with an overpotential of 351 mV.

2.
Angew Chem Int Ed Engl ; 62(2): e202211663, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36303469

RESUMEN

The influence of structural modifications on the catalytic activity of carbon materials is poorly understood. A collection of carbonaceous materials with different pore networks and high nitrogen content was characterized and used to catalyze four reactions to deduce structure-activity relationships. The CO2 cycloaddition and Knoevenagel reaction depend on Lewis basic sites (electron-rich nitrogen species). The absence of large conjugated carbon domains resulting from the introduction of large amounts of nitrogen in the carbon network is responsible for poor redox activity, as observed through the catalytic reduction of nitrobenzene with hydrazine and the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine using hydroperoxide. The material with the highest activity towards Lewis acid catalysis (in the hydrolysis of (dimethoxymethyl)benzene to benzaldehyde) is the most effective for small molecule activation and presents the highest concentration of electron-poor nitrogen species.

3.
ACS Appl Mater Interfaces ; 13(25): 29612-29618, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34128637

RESUMEN

Energy consumption is a growing phenomenon in our society causing many negative effects such as global warming. There is a need for the development of new sustainable materials for energy storage. Carbons are materials derivable from biowaste that can rather easily store energy due to their high conductivity and surface area. However, their large-scale processing is challenging as derived materials can be rather heterogeneous and homogenization requires ball milling, a process that can damage carbons in the process of oxidation. Herein, we have prepared caffeine-derived noble nitrogen-doped carbon that withstands the ball milling process without significant oxidation. Additionally, it performs extraordinarily as a cathode material for lithium-ion capacitors, making it an attractive biowaste-derived alternative to commercial heavy metal cathodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...