Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Synchrotron Radiat ; 28(Pt 2): 392-403, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650550

RESUMEN

Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10-30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.


Asunto(s)
Radiometría , Sincrotrones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Rayos X
2.
Phys Med Biol ; 65(4): 045014, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31739291

RESUMEN

Microdosimetry is a particularly powerful method to estimate the relative biological effectiveness (RBE) of any mixed radiation field. This is particularly convenient for therapeutic heavy ion therapy (HIT) beams, referring to ions larger than protons, where the RBE of the beam can vary significantly along the Bragg curve. Additionally, due to the sharp dose gradients at the end of the Bragg peak (BP), or spread out BP, to make accurate measurements and estimations of the biological properties of a beam a high spatial resolution is required, less than a millimetre. This requirement makes silicon microdosimetry particularly attractive due to the thicknesses of the sensitive volumes commonly being ∼10 [Formula: see text]m or less. Monte Carlo (MC) codes are widely used to study the complex mixed HIT radiation field as well as to model the response of novel microdosimeter detectors when irradiated with HIT beams. Therefore it is essential to validate MC codes against experimental measurements. This work compares measurements performed with a silicon microdosimeter in mono-energetic [Formula: see text], [Formula: see text] and [Formula: see text] ion beams of therapeutic energies, against simulation results calculated with the Geant4 toolkit. Experimental and simulation results were compared in terms of microdosimetric spectra (dose lineal energy, [Formula: see text]), the dose mean lineal energy, y  D and the RBE10, as estimated by the microdosimetric kinetic model (MKM). Overall Geant4 showed reasonable agreement with experimental measurements. Before the distal edge of the BP, simulation and experiment agreed within ∼10% for y  D and ∼2% for RBE10. Downstream of the BP less agreement was observed between simulation and experiment, particularly for the [Formula: see text] and [Formula: see text] beams. Simulation results downstream of the BP had lower values of y  D and RBE10 compared to the experiment due to a higher contribution from lighter fragments compared to heavier fragments.


Asunto(s)
Radioterapia de Iones Pesados , Método de Montecarlo , Radiometría/métodos , Silicio , Cinética , Modelos Biológicos , Efectividad Biológica Relativa
3.
Phys Med Biol ; 64(8): 085002, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30808009

RESUMEN

A prototype in-body gamma camera system with integrated trans-rectal ultrasound (TRUS) and associated real-time image acquisition and analysis software was developed for intraoperative source tracking in high dose rate (HDR) brachytherapy. The accuracy and temporal resolution of the system was validated experimentally using a deformable tissue-equivalent prostate gel phantom and a full clinical HDR treatment plan. The BrachyView system was able to measure 78% of the 200 source positions with an accuracy of better than 1 mm. A minimum acquisition time of 0.28 s/frame was required to achieve this accuracy, restricting dwell times to a minimum of 0.3 s. Additionally, the performance of the BrachyView-TRUS fusion probe for mapping the spatial location of the tracked source within the prostate volume was evaluated. A global coordinate system was defined by scanning the phantom with the probe in situ using a CT scanner, and was subsequently used for co-registration of the BrachyView and TRUS fields of view (FoVs). TRUS imaging was used to segment the prostate volume and reconstruct it into a three-dimensional (3D) image. Fusion of the estimated source locations with the 3D prostate image was performed using integrated 3D visualisation software. HDR BrachyView is demonstrated to be a valuable tool for intraoperative source tracking in HDR brachytherapy, capable of resolving source dwell locations relative to the prostate anatomy when combined with TRUS.


Asunto(s)
Braquiterapia/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Programas Informáticos , Ultrasonografía/métodos , Braquiterapia/instrumentación , Cámaras gamma , Humanos , Masculino , Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Ultrasonografía/instrumentación
4.
Australas Phys Eng Sci Med ; 42(2): 443-451, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30790139

RESUMEN

A family of prototype 2D monolithic silicon-diode array detectors (MP512, Duo, Octa) has been proposed by the Centre for Medical Radiation Physics, University of Wollongong (Australia) for relative dosimetry in small megavoltage photon beams. These detectors, which differ in the topology of their 512 sensitive volumes, were originally fabricated on bulk p-type substrates. More recently, they have also been fabricated on epitaxial p-type substrates. In the literature, their performance has been individually characterized for quality assurance (QA) applications. The present study directly assessed and compared that of a MP512-bulk and that of a MP512-epitaxial in terms of radiation hardness, long-term stability, response linearity with dose, dose per pulse and angular dependence. Their measurements of output factors, off-axis ratios and percentage depth doses in square radiation fields collimated by the jaws and produced by 6 MV and 10 MV flattened photon beams were then benchmarked against those by commercially available detectors. The present investigation was aimed at establishing, from a medical physicist's perspective, how the bulk and epitaxial fabrication technologies would affect the implementation of the MP512s into a QA protocol. Based on results, the MP512-epitaxial would offer superior radiation hardness, long-term stability and achievable uniformity and reproducibility of the response across the 2D active area.


Asunto(s)
Física Sanitaria/instrumentación , Fotones , Silicio/química , Relación Dosis-Respuesta en la Radiación , Órganos en Riesgo
5.
Phys Med Biol ; 61(14): N349-61, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27366861

RESUMEN

Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency's TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called 'current ramping' method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Radiometría/métodos , Sincrotrones/instrumentación , Agua/química , Humanos , Rayos X
6.
Eur Radiol ; 26(1): 79-86, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26002131

RESUMEN

OBJECTIVES: To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. METHODS: Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. RESULTS: The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. CONCLUSIONS: The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. KEY POINTS: Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.


Asunto(s)
Angiografía Cerebral/métodos , Cristalino/efectos de la radiación , Embolización Terapéutica/métodos , Diseño de Equipo , Femenino , Fluoroscopía/métodos , Humanos , Aneurisma Intracraneal/terapia , Masculino , Persona de Mediana Edad , Dosis de Radiación , Radiografía Intervencional/métodos
7.
Med Phys ; 42(12): 7098-107, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26632063

RESUMEN

PURPOSE: This paper presents initial experimental results from a prototype of high dose rate (HDR) BrachyView, a novel in-body source tracking system for HDR brachytherapy based on a multipinhole tungsten collimator and a high resolution pixellated silicon detector array. The probe and its associated position estimation algorithms are validated and a comprehensive evaluation of the accuracy of its position estimation capabilities is presented. METHODS: The HDR brachytherapy source is moved through a sequence of positions in a prostate phantom, for various displacements in x, y, and z. For each position, multiple image acquisitions are performed, and source positions are reconstructed. Error estimates in each dimension are calculated at each source position and combined to calculate overall positioning errors. Gafchromic film is used to validate the accuracy of source placement within the phantom. RESULTS: More than 90% of evaluated source positions were estimated with an error of less than one millimeter, with the worst-case error being 1.3 mm. Experimental results were in close agreement with previously published Monte Carlo simulation results. CONCLUSIONS: The prototype of HDR BrachyView demonstrates a satisfactory level of accuracy in its source position estimation, and additional improvements are achievable with further refinement of HDR BrachyView's image processing algorithms.


Asunto(s)
Braquiterapia/instrumentación , Braquiterapia/métodos , Próstata/diagnóstico por imagen , Radioterapia Guiada por Imagen/instrumentación , Radioterapia Guiada por Imagen/métodos , Algoritmos , Diagnóstico por Imagen/instrumentación , Diagnóstico por Imagen/métodos , Diseño de Equipo , Humanos , Masculino , Modelos Biológicos , Fantasmas de Imagen , Próstata/efectos de la radiación , Radiografía , Radiometría/instrumentación , Radiometría/métodos , Dosificación Radioterapéutica , Silicio , Tungsteno
8.
Med Phys ; 42(8): 4708-18, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26233198

RESUMEN

PURPOSE: In this work, the "edgeless" silicon detector technology is investigated, in combination with an innovative packaging solution, to manufacture silicon detectors with negligible angular response. The new diode is also characterized as a dosimeter for radiotherapy with the aim to verify its suitability as a single detector for in vivo dosimetry as well as large area 2D array that does not require angular correction to their response. METHODS: For the characterisation of the "edgeless-drop-in" detector technology, a set of samples have been manufactured with different sensitive areas (1 × 1 and 0.5 × 0.5 mm(2)) and different thicknesses (0.1 and 0.5 mm) in four different combinations of top and peripheral p-n junction fabricated on p-type and n-type silicon substrates. The diode probes were tested in terms of percentage depth dose (PDD), dose rate, and linearity and compared to ion chambers. Measurements of the output factor have been compared to film. The angular response of the diodes probes has been tested in a cylindrical PMMA phantom, rotated with bidirectional accuracy of 0.25° under 10 × 10 cm(2) 6 MV Linac photon beam. The radiation hardness has been investigated as well as the effect of radiation damage on the angular and dose rate response of the diode probes when irradiated with photons from a Co-60 gamma source up to dose of 40 kGy. RESULTS: The PDDs measured by the edgeless detectors show an agreement with the data obtained using ion chambers within ±2%. The output factor measured with the smallest area edgeless diodes (0.5 × 0.5 mm(2)-0.1 and 0.5 mm thick) matches EBT3 film to within 2% for square field size from 10 to 0.5 cm side equivalent distance. The dose rate dependence in a dose per pulse range of 0.9 × 10(-5)-2.7 × 10(-4) Gy/pulse was less than -7% and +300% for diodes fabricated on p-type and n-type substrates, respectively. The edgeless diodes fabricated on the p-type substrate demonstrated degradation of the response as a function of the irradiation dose within 5%-15%, while diodes on the n-type substrate show a variation of approximately 30% after 40 kGy. The angular response of all probes is minimal (within 2%) but the N on N and P on P configurations show the best performances with an angular dependence of ±1.0% between 0° and 180° in the transversal direction. In this configuration, the space charge region of the passive diode extends from the behind and sidewall toward the anode on the top providing beneficial electric field distribution in the peripheral area of the diode. Such performance has also been tested after irradiation by Co-60 up to 40 kGy with no measurable change in angular response. CONCLUSIONS: A new edgeless-drop-in silicon diode fabrication and packaging technology has been used to develop detectors that show no significant angular dependence in their response for dosimetry in radiation therapy. From the characterisation of the diodes, proposed in a wide range of different geometries and configurations, the authors recommend the P-on-P detectors in conjunction with "drop in" packaging technology as the candidate for further development as single diode probe or 2D diode array for dosimetry in radiotherapy.


Asunto(s)
Radiometría/instrumentación , Radioterapia/instrumentación , Radioisótopos de Cobalto , Fenómenos Electromagnéticos , Diseño de Equipo , Modelos Lineales , Aceleradores de Partículas , Fantasmas de Imagen , Polimetil Metacrilato , Radiometría/métodos , Radioterapia/métodos , Silicio
9.
Phys Med Biol ; 60(17): 6949-73, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26305868

RESUMEN

A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring method to a three dimensional virtual cylinder is demonstrated using a 3D DoI PET scanner.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/instrumentación , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Interfaz Usuario-Computador , Animales , Compresión de Datos , Humanos , Aumento de la Imagen , Imagenología Tridimensional/métodos , Método de Montecarlo
10.
Med Phys ; 42(6): 2992-3004, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26127052

RESUMEN

PURPOSE: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named "MagicPlate-512" for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. METHODS: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by (GEANT)4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. RESULTS: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. CONCLUSIONS: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.


Asunto(s)
Movimiento , Radiocirugia/instrumentación , Silicio , Humanos , Método de Montecarlo , Control de Calidad , Ondas de Radio , Programas Informáticos
11.
Med Phys ; 42(2): 663-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25771556

RESUMEN

PURPOSE: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. METHODS: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position­time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. RESULTS: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position­time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. CONCLUSIONS: The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position­time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery.


Asunto(s)
Braquiterapia/instrumentación , Fantasmas de Imagen , Dosis de Radiación , Rayos gamma/uso terapéutico , Humanos , Control de Calidad , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Factores de Tiempo , Tomografía Computarizada por Rayos X
12.
Med Phys ; 42(2): 663-673, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28102606

RESUMEN

PURPOSE: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named "magic phantom" (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. METHODS: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the "position-time gamma index," was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. RESULTS: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position-time gamma index showed that all modifications made could be readily detected. The MPh was able to measure dwell times down to 0.067 ± 0.001 s and planned dwell positions separated by 1 mm. The dose calculation carried out by the MPh software was found to be in agreement with values calculated by the treatment planning system within 0.75%. Using the 2D gamma index, the dose map of the MPh plane and measured EBT3 were found to have a pass rate of over 95% when compared to the original plan. CONCLUSIONS: The application of this magic phantom quality assurance system to HDR brachytherapy has demonstrated promising ability to perform the verification of treatment plans, based upon the measured dwell positions and times. The introduction of the quantitative position-time gamma index allows for direct comparison of measured parameters against the plan and could be used prior to patient treatment to ensure accurate delivery.


Asunto(s)
Braquiterapia/instrumentación , Fantasmas de Imagen , Dosificación Radioterapéutica/normas , Planificación de la Radioterapia Asistida por Computador/instrumentación , Braquiterapia/métodos , Calibración , Catéteres , Diseño de Equipo , Dosimetría por Película , Control de Calidad , Planificación de la Radioterapia Asistida por Computador/métodos , Programas Informáticos , Factores de Tiempo , Tomografía Computarizada por Rayos X
13.
Phys Med Biol ; 59(21): 6659, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25325249

RESUMEN

HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an (192)Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HDR.


Asunto(s)
Braquiterapia/instrumentación , Braquiterapia/métodos , Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/métodos , Tungsteno/química , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Método de Montecarlo , Neoplasias de la Próstata/patología , Dispersión de Radiación , Programas Informáticos
14.
Med Phys ; 41(9): 091707, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25186382

RESUMEN

PURPOSE: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named "MagicPlate-512" (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). METHODS: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5×0.5 mm2 and pitch 2 mm with an overall dimension of 52×52 mm2. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. RESULTS: MP512 shows a good dose linearity (R2=0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10×10 cm2 agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1×1 cm2. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP512 match to within 2% the data measured by radiochromic film. CONCLUSIONS: The response of the 2D detector array, MP512, has been evaluated. The properties of the array demonstrated suitability for use as in phantom dosimeter for QA in SRS and SBRT. Although MP512 matches film measurements down to 1×1 cm2 well, it showed a discrepancy of 4% in the determination of output factors of beams smaller than 0.5×0.5 cm2 due to the field perturbation generated by the large amount of silicon surrounding the central diode. MP512 is highly capable of measuring beam size (FWHM) and has a discrepancy of less than 1.3% when compared to EBT3 film. A reduction in the detector pitch to less than 2 mm would improve the penumbra reconstruction accuracy at the cost readout electronics complexity.


Asunto(s)
Radiometría/instrumentación , Radiocirugia/instrumentación , Silicio , Diseño de Equipo , Fantasmas de Imagen , Radiometría/métodos , Radiocirugia/métodos , Dosificación Radioterapéutica
15.
Med Phys ; 40(11): 111702, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24320410

RESUMEN

PURPOSE: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly (192)Ir with an air KERMA strength range between 20,000 and 40,000 U, where 1 U = 1 µGy m(2)/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named "magic phantom." METHODS: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array "magic plate" (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the (192)Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a (192)Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ. RESULTS: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively. CONCLUSIONS: Our characterization of the designed QA "magic phantom" with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.


Asunto(s)
Braquiterapia/métodos , Aire , Algoritmos , Catéteres , Diseño de Equipo , Estudios de Factibilidad , Humanos , Radioisótopos de Iridio/uso terapéutico , Método de Montecarlo , Agujas , Fantasmas de Imagen , Control de Calidad , Radiometría/métodos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Programas Informáticos
16.
Med Phys ; 40(7): 071715, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23822419

RESUMEN

PURPOSE: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 × 60 mm(2) silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project. METHODS: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a (192)Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location. RESULTS: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in the estimated projection position was found to be 0.95 mm in the imaging (detector) plane, resulting in a maximum source positioning estimation error of 1.48 mm. CONCLUSIONS: HDR BrachyView is a feasible design for real-time source tracking in HDR prostate brachytherapy. It is capable of resolving the source position within a subsecond dwell time. In combination with anatomical information obtained from transrectal ultrasound imaging, HDR BrachyView adds a significant quality assurance capability to HDR brachytherapy treatment systems.


Asunto(s)
Braquiterapia/métodos , Imagen Molecular/métodos , Método de Montecarlo , Neoplasias de la Próstata/radioterapia , Radioterapia Guiada por Imagen/métodos , Estudios de Factibilidad , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Radiometría
17.
Med Phys ; 40(4): 041709, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23556879

RESUMEN

PURPOSE: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. METHODS: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. RESULTS: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real-time imaging (using a 3 s data acquisition time) of different brachytherapy seed configurations (with an activity of 0.05 U) throughout a 60 × 60 × 60 mm(3) Perspex prostate phantom. CONCLUSIONS: The newly developed miniature gamma camera component of BrachyView, with its high spatial resolution and real time capability, allows accurate 3D localization of seeds in a prostate phantom. Combination of the gamma camera with TRUS in a single probe will complete the BrachyView system.


Asunto(s)
Braquiterapia/métodos , Cámaras gamma , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Cintigrafía/instrumentación , Radioterapia Guiada por Imagen/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Masculino , Fantasmas de Imagen , Proyectos Piloto , Cintigrafía/métodos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
18.
Med Phys ; 39(5): 2544-58, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22559625

RESUMEN

PURPOSE: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. METHODS: The prototype MP is an 11 × 11 detector array based on thin (50 µm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. RESULTS: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. CONCLUSIONS: The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.


Asunto(s)
Radiometría/instrumentación , Radioterapia Asistida por Computador/instrumentación , Aire , Modelos Lineales , Fantasmas de Imagen , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/efectos adversos , Propiedades de Superficie , Agua
19.
Med Phys ; 38(4): 2256-64, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21626960

RESUMEN

PURPOSE: Helical tomotherapy is a complex delivery technique, integrating CT image guidance and intensity modulated radiotherapy in a single system. The integration of the CT detector ring on the gantry not only allows patient position verification but is also often used to perform various QA procedures. This convenience lacks the rigor of a machine-independent QA process. METHODS: In this article, a Si strip detector, known as the Dose Magnifying Glass (DMG), was used to perform machine-independent QA measurements of the multileaf collimator alignment, leaf open time threshold, and leaf fluence output factor (LFOF). RESULTS: The DMG measurements showed good agreements with EDR2 film for the MLC alignment test while the CT detector agrees well with DMG measurements for leaf open time threshold and LFOF measurements. The leaf open time threshold was found to be approximately 20 ms. The LFOF measured with the DMG agreed within error with the CT detector measured LFOF. CONCLUSIONS: The DMG with its 0.2 mm spatial resolution coupled to TERA ASIC allowed real-time high temporal resolution measurements of the tomotherapy leaf movement. In conclusion, DMG was shown to be a suitable tool for machine-independent QA of a tomotherapy unit.


Asunto(s)
Vidrio , Dosis de Radiación , Radioterapia Asistida por Computador/instrumentación , Tomografía Computarizada por Rayos X , Control de Calidad , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/normas , Silicio
20.
Med Phys ; 38(3): 1226-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21520835

RESUMEN

PURPOSE: Stereotactic radiosurgery/therapy (SRS/SRT) is the use of radiation ablation in place of conventional surgical excision to remove or create fibrous tissue in small target volumes. The target of the SRT/SRS treatment is often located in close proximity to critical organs, hence the requirement of high geometric precision including a tight margin on the planning target volume and a sharp dose fall off. One of the major problems with quality assurance (QA) of SRT/SRS is the availability of suitable detectors with the required spatial resolution. The authors present a novel detector that they refer to as the dose magnifying glass (DMG), which has a high spatial resolution (0.2 mm) and is capable of meeting the stringent requirements of QA and dosimetry in SRS/SRT therapy. METHODS: The DMG is an array of 128 phosphor implanted n+ strips on a p-type Si wafer. The sensitive area defined by a single n+ strip is 20 x 2000 microm2. The Si wafer is 375 microm thick. It is mounted on a 0.12 mm thick Kapton substrate. The authors studied the dose per pulse (dpp) and angular response of the detector in a custom-made SRS phantom. The DMG was used to determine the centers of rotation and positioning errors for the linear accelerator's gantry, couch, and collimator rotations. They also used the DMG to measure the profiles and the total scatter factor (S(cp)) of the SRS cones. Comparisons were made with the EBT2 film and standard S(cp) values. The DMG was also used for dosimetric verification of a typical SRS treatment with various noncoplanar fields and arc treatments when applied to the phantom. RESULTS: The dose per pulse dependency of the DMG was found to be < 5% for a dpp change of 7.5 times. The angular response of the detector was investigated in the azimuthal and polar directions. The maximum polar angular response was 13.8% at the gantry angle of 320 degrees, which may be partly due to the phantom geometry. The maximum azimuthal angular response was 15.3% at gantry angles of 90 degrees and 270 degrees. The angular response at the gantry angle of 180 degrees was 6.3%. A correction function was derived to correct for the angular dependence of the detector, which takes into account the contribution of the azimuthal and polar angular response at different treatment couch positions. The maximum positioning errors due to collimator, gantry, and couch rotation were 0.2 +/- 0.1, 0.4 +/- 0.1, and 0.4 +/- 0.2 mm, respectively. The SRS cone S(cp) agrees very well with the standard data with an average difference of 1.2 +/- 1.1%. Comparison of the relative intensity profiles of the DMG and EBT2 measurements for a simulated SRS treatment shows a maximum difference of 2.5%. CONCLUSIONS: The DMG was investigated for dose per pulse and angular dependency. Its application to SRS/SRT delivery verification was demonstrated. The DMG with its high spatial resolution and real time capability allows measurement of dose profiles for cone applicators down to 5 mm in diameter, both accurately and rapidly as required in typical SRS/SRT deliveries.


Asunto(s)
Radiometría/instrumentación , Radiocirugia/métodos , Radiocirugia/normas , Silicio , Humanos , Control de Calidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...