Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cells ; 12(21)2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37947648

RESUMEN

Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects. Due to the poor pharmacokinetic properties of endogenous FPR2 ligands, the aim of our study was to evaluate the pro-resolving effects of a new ureidopropanamide agonist, compound AMS21, in hippocampal organotypic cultures (OHCs) stimulated with lipopolysaccharide (LPS). Moreover, to assess whether AMS21 exerts its action via FPR2 specifically located on microglial cells, we conducted a set of experiments in OHCs depleted of microglial cells using clodronate. We demonstrated that the protective and anti-inflammatory activity of AMS21 manifested as decreased levels of lactate dehydrogenase (LDH), nitric oxide (NO), and proinflammatory cytokines IL-1ß and IL-6 release evoked by LPS in OHCs. Moreover, in LPS-stimulated OHCs, AMS21 treatment downregulated NLRP3 inflammasome-related factors (CASP1, NLRP3, PYCARD) and this effect was mediated through FPR2 because it was blocked by the FPR2 antagonist WRW4 pre-treatment. Importantly this beneficial effect of AMS21 was only observed in the presence of microglial FPR2, and absent in OHCs depleted with microglial cells using clodronate. Our results strongly suggest that the compound AMS21 exerts, at nanomolar doses, protective and anti-inflammatory properties and an FPR2 receptor located specifically on microglial cells mediates the anti-inflammatory response of AMS21. Therefore, microglial FPR2 represents a promising target for the enhancement of RoI.


Asunto(s)
Inflamasomas , Microglía , Humanos , Inflamasomas/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Formil Péptido/metabolismo , Lipopolisacáridos/farmacología , Ácido Clodrónico/farmacología , Ácido Clodrónico/uso terapéutico , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Hipocampo/metabolismo
2.
ACS Chem Neurosci ; 14(20): 3869-3882, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37775304

RESUMEN

A substantial body of evidence demonstrates an association between a malfunction in the resolution of acute inflammation and the development of chronic inflammation. Recently, in this context, the importance of formyl peptide receptor 2 (FPR2) has been underlined. FPR2 activity is modulated by a wide range of endogenous ligands, including specialized pro-resolving mediators (SPMs) (e.g., LXA4 and AT-LXA4) and synthetic ligands. Since SPMs have unfavorable pharmacokinetic properties, we aimed to evaluate the protective and pro-resolving effects of a new potent FPR2 agonist, compound CMC23, in organotypic hippocampal cultures (OHCs) stimulated with lipopolysaccharide (LPS). The protective activity of CMC23 limited the lactate dehydrogenase release in LPS-stimulated cultures. This activity was mediated by the interaction with FPR2 as pretreatment with the FPR2 selective antagonist WRW4 abolished CMC23-induced protection. Furthermore, decreased levels of pro-inflammatory IL-1ß and IL-6 were observed after CMC23 administration in LPS-treated OHCs. CMC23 also diminished the LPS-induced increase in IL-17A and both IL-23 subunits p19 and p40 in OHCs. Finally, we demonstrated that CMC23 exerts its beneficial impact via the STAT3/SOCS3 signaling pathway since it attenuated the level of phospho-STAT3 and maintained the LPS-induced SOCS3 levels in OHCs. Collectively, our research implies that the new FPR2 agonist CMC23 has beneficial protective and anti-inflammatory properties in nanomolar doses and FPR2 represents a promising target for the enhancement of inflammation resolution.


Asunto(s)
Enfermedades Neuroinflamatorias , Receptores de Formil Péptido , Humanos , Endotoxinas , Hipocampo/metabolismo , Lipopolisacáridos/toxicidad , Receptores de Formil Péptido/agonistas , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/tratamiento farmacológico
3.
Biomedicines ; 11(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239076

RESUMEN

Atypical antipsychotics currently constitute the first-line medication for schizophrenia, with quetiapine being one of the most commonly prescribed representatives of the group. Along with its specific affinity for multiple receptors, this compound exerts other biological characteristics, among which anti-inflammatory effects are strongly suggested. Simultaneously, published data indicated that inflammation and microglial activation could be diminished by stimulation of the CD200 receptor (CD200R), which takes place by binding to its ligand (CD200) or soluble CD200 fusion protein (CD200Fc). Therefore, in the present study, we sought to evaluate whether quetiapine could affect certain aspects of microglial activity, including the CD200-CD200R and CX3CL1-CX3CR1 axes, which are involved in the regulation of neuron-microglia interactions, as well as the expression of selected markers of the pro- and anti-inflammatory profile of microglia (Cd40, Il-1ß, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-ß). Concurrently, we examined the impact of quetiapine and CD200Fc on the IL-6 and IL-10 protein levels. The abovementioned aspects were investigated in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those subjected to maternal immune activation (MIA OCCs), which is a widely implemented approach to explore schizophrenia-like disturbances in animals. The experiments were performed under basal conditions and after additional exposure to the bacterial endotoxin lipopolysaccharide (LPS), according to the "two-hit" hypothesis of schizophrenia. The results of our research revealed differences between control and MIA OCCs under basal conditions and in response to treatment with LPS in terms of lactate dehydrogenase and nitric oxide release as well as Cd200r, Il-1ß, Il-6 and Cd206 expression. The additional stimulation with the bacterial endotoxin resulted in a notable change in the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Quetiapine diminished the influence of LPS on Il-1ß, Il-6, Cebpb and Arg1 expression in control OCCs as well as on IL-6 and IL-10 levels in MIA OCCs. Moreover, CD200Fc reduced the impact of the bacterial endotoxin on IL-6 production in MIA OCCs. Thus, our results demonstrated that quetiapine, as well as the stimulation of CD200R by CD200Fc, beneficially affected LPS-induced neuroimmunological changes, including microglia-related activation.

4.
Cells ; 12(4)2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36831327

RESUMEN

The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Receptores de Calcitriol/metabolismo , Enfermedad de Parkinson/genética , Vitamina D/metabolismo , Vitaminas
6.
Antioxidants (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358492

RESUMEN

Ischemic stroke is one of the major causes of death and permanent disability worldwide. The only efficient treatment to date is anticoagulant therapy and thrombectomy, which enable restitution of blood flow to ischemic tissues. Numerous promising neuroprotectants have failed in clinical trials. Given the complex pathomechanism of stroke, a multitarget pharmacotherapy seems a more rational approach in stroke prevention and treatment than drugs acting on single molecular targets. Recently, vitamin D3 has emerged as a potential treatment adjunct for ischemic stroke, as it interferes with the key prosurvival pathways and shows neuroprotective, anti-inflammatory, regenerative and anti-aging properties in both neuronal and vascular tissue. Moreover, the stimulatory effect of vitamin D3 on brain-derived neurotrophic factor (BDNF) signaling and neuroplasticity may play a role not only in the recovery of neurological functions, but also in ameliorating post-stroke depression and anxiety. This narrative review presents advances in research on the biochemical mechanisms of stroke-related brain damage, and the genomic and non-genomic effects of vitamin D3 which may interfere with diverse cell death signaling pathways. Next, we discuss the results of in vitro and in vivo experimental studies on the neuroprotective potential of 1alpha,25-dihydroxyvitamin D3 (calcitriol) in brain ischemia models. Finally, the outcomes of clinical trials on vitamin D3 efficiency in ischemic stroke patients are briefly reviewed. Despite the mixed results of the clinical trials, it appears that vitamin D3 still holds promise in preventing or ameliorating neurological and psychiatric consequences of ischemic stroke and certainly deserves further study.

7.
Metabolites ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888732

RESUMEN

Here we present comparative data on the inhibition of lipid peroxidation by a variety of tocochromanols in liposomes. We also show for the first time the potential neuroprotective role of all the vitamin E homologues investigated on the neuronally differentiated human neuroblastoma SH-SY5Y cell line. α-Tocopherol had nearly no effect in the inhibition of lipid peroxidation, while ß-, γ-, and δ-tocopherols inhibited the reaction completely when it was initiated in a lipid phase. Similar effects were observed for tocotrienol homologues. Moreover, in this respect plastochromanol-8 was as effective as ß-, γ-, and δ-tocochromanols. When the prenyllipids were investigated in a 1,1-diphenyl-2-picrylhydrazyl (DPPH) test and incorporated into different lipid carriers, the radical oxidation was most pronounced in liposomes, followed by mixed micelles and the micellar system. When the reaction of tocochromanols was examined in niosomes, the oxidation was most pronounced for α-tocopherol and plastochromanol-8, followed by α-tocotrienol. Next, using retinoic acid-differentiated SH-SY5Y cells, we tested the protective effects of the compounds investigated on hydrogen peroxide (H2O2)-induced cell damage. We showed that tocotrienols were more active than tocopherols in the oxidative stress model. Plastochromanol-8 had a strong inhibitory effect on H2O2-induced lactate dehydrogenase (LDH) release and H2O2-induced decrease in cell viability. The water-soluble α-tocopherol phosphate had neuroprotective effects at all the concentrations analyzed. The results clearly indicate that structural differences between vitamin E homologues reflect their different biological activity and indicate their potential application in pharmacological treatments for neurodegenerative diseases. In this respect, the application of optimal tocochromanol-carrying structures might be critical.

8.
J Med Chem ; 65(6): 5004-5028, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35257581

RESUMEN

Formyl peptide receptor 2 (FPR2) agonists can boost the resolution of inflammation and can offer alternative approaches for the treatment of pathologies with underlying chronic neuroinflammation, including neurodegenerative disorders. Starting from the FPR2 agonist 2 previously identified in our laboratory and through fine-tuning of FPR2 potency and metabolic stability, we have identified a new series of ureidopropanamide derivatives endowed with a balanced combination of such properties. Computational studies provided insights into the key interactions of the new compounds for FPR2 activation. In mouse microglial N9 cells and in rat primary microglial cells stimulated with lipopolysaccharide, selected compounds inhibited the production of pro-inflammatory cytokines, counterbalanced the changes in mitochondrial function, and inhibited caspase-3 activity. Among the new agonists, (S)-11l stands out also for the ability to permeate the blood-brain barrier and to accumulate in the mouse brain in vivo, thus representing a valuable pharmacological tool for studies in vivo.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Receptores de Formil Péptido , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , Ratas , Receptores de Formil Péptido/agonistas , Receptores de Lipoxina/metabolismo
9.
Cells ; 10(9)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34572022

RESUMEN

Prolonged or excessive microglial activation may lead to disturbances in the resolution of inflammation (RoI). The importance of specialized pro-resolving lipid mediators (SPMs) in RoI has been highlighted. Among them, lipoxins (LXA4) and aspirin-triggered lipoxin A4 (AT-LXA4) mediate beneficial responses through the activation of N-formyl peptide receptor-2 (FPR2). We aimed to shed more light on the time-dependent protective and anti-inflammatory impact of the endogenous SPMs, LXA4, and AT-LXA4, and of a new synthetic FPR2 agonist MR-39, in lipopolysaccharide (LPS)-exposed rat microglial cells. Our results showed that LXA4, AT-LXA4, and MR-39 exhibit a protective and pro-resolving potential in LPS-stimulated microglia, even if marked differences were apparent regarding the time dependency and efficacy of inhibiting particular biomarkers. The LXA4 action was found mainly after 3 h of LPS stimulation, and the AT-LXA4 effect was varied in time, while MR-39's effect was mainly observed after 24 h of stimulation by endotoxin. MR-39 was the only FPR2 ligand that attenuated LPS-evoked changes in the mitochondrial membrane potential and diminished the ROS and NO release. Moreover, the LPS-induced alterations in the microglial phenotype were modulated by LXA4, AT-LXA4, and MR-39. The anti-inflammatory effect of MR-39 on the IL-1ß release was mediated through FPR2. All tested ligands inhibited TNF-α production, while AT-LXA4 and MR-39 also diminished IL-6 levels in LPS-stimulated microglia. The favorable action of LXA4 and MR-39 was mediated through the inhibition of ERK1/2 phosphorylation. AT-LXA4 and MR39 diminished the phosphorylation of the transcription factor NF-κB, while AT-LXA4 also affected p38 kinase phosphorylation. Our results suggest that new pro-resolving synthetic mediators can represent an attractive treatment option for the enhancement of RoI, and that FPR2 can provide a perspective as a target in immune-related brain disorders.


Asunto(s)
Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptores de Lipoxina/agonistas , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microglía/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
10.
Pharmacol Rep ; 73(6): 1712-1723, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34398437

RESUMEN

BACKGROUND: Preclinical and clinical studies have indicated that impaired endogenous synthesis of glutathione during early postnatal development plays a significant role in the pathophysiology of schizophrenia. Moreover, some studies have suggested that antidepressants are able to increase the activity of atypical antipsychotics which may efficiently improve the treatment of negative and cognitive symptoms of schizophrenia. METHODS: In the present study, we investigated the influence of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behavior and BDNF mRNA expression in adult rats exposed to glutathione deficit during early postnatal development. Male pups between the postnatal days p5-p16 were treated with the inhibitor of glutathione synthesis, BSO (L-buthionine-(S,R)-sulfoximine) and the dopamine uptake inhibitor, GBR 12,909 alone or in combination. Escitalopram and aripiprazole were given repeatedly for 21 days before the tests. On p90-92 rats were evaluated in the behavioral and biochemical tests. RESULTS: BSO given alone and together with GBR 12,909 induced deficits in the studied behavioral tests and decreased the expression of BDNF mRNA. Repeated aripiprazole administration at a higher dose reversed these behavioral deficits. Co-treatment with aripiprazole and an ineffective dose of escitalopram also abolished the behavioral deficits in the studied tests. CONCLUSION: The obtained data indicated that the inhibition of glutathione synthesis in early postnatal development induced long-term deficits corresponding to schizophrenia-like behavior and decreased the BDNF mRNA expression in adult rats, and these behavioral deficits were reversed by repeated treatment with a higher dose of aripiprazole and also by co-treatment with aripiprazole and ineffective dose of escitalopram.


Asunto(s)
Aripiprazol/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Escitalopram/farmacología , Esquizofrenia/tratamiento farmacológico , Animales , Animales Recién Nacidos , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacología , Aripiprazol/administración & dosificación , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Escitalopram/administración & dosificación , Glutatión/deficiencia , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/fisiopatología , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
11.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201038

RESUMEN

Growing body of evidence points to dysregulation of redox status in the brain as an important factor in the pathogenesis of schizophrenia. The aim of our study was to evaluate the effects of l-buthionine-(S,R)-sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, and 1-[2-Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909), a dopamine reuptake inhibitor, given alone or in combination, to Sprague-Dawley pups during early postnatal development (p5-p16), on the time course of the onset of schizophrenia-like behaviors, and on the expression of brain-derived neurotrophic factor (BDNF) mRNA and its protein in the prefrontal cortex (PFC) and hippocampus (HIP) during adulthood. BSO administered alone decreased the levels of BDNF mRNA and its protein both in the PFC and HIP. Treatment with the combination of BSO + GBR 12909 also decreased BDNF mRNA and its protein in the PFC, but in the HIP, only the level of BDNF protein was decreased. Schizophrenia-like behaviors in rats were assessed at three time points of adolescence (p30, p42-p44, p60-p62) and in early adulthood (p90-p92) using the social interaction test, novel object recognition test, and open field test. Social and cognitive deficits first appeared in the middle adolescence stage and continued to occur into adulthood, both in rats treated with BSO alone or with the BSO + GBR 12909 combination. Behavior corresponding to positive symptoms in humans occurred in the middle adolescence period, only in rats treated with BSO + GBR 12909. Only in the latter group, amphetamine exacerbated the existing positive symptoms in adulthood. Our data show that rats receiving the BSO + GBR 12909 combination in the early postnatal life reproduced virtually all symptoms observed in patients with schizophrenia and, therefore, can be considered a valuable neurodevelopmental model of this disease.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/patología , Glutatión/deficiencia , Hipocampo/patología , Trastornos del Neurodesarrollo/patología , Esquizofrenia/patología , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Masculino , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/etiología , Esquizofrenia/metabolismo
12.
Cells ; 10(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204273

RESUMEN

Accumulating evidence indicates a pivotal role for chronic inflammatory processes in the pathogenesis of neurodegenerative and psychiatric disorders. G protein-coupled formyl peptide receptor 2 (FPR2) mediates pro-inflammatory or anti-/pro-resolving effects upon stimulation with biased agonists. We aimed to evaluate the effects of a new FPR2 ureidopropanamide agonist, compound MR-39, on neuroinflammatory processes in organotypic hippocampal cultures (OHCs) derived from control (WT) and knockout FPR2-/- mice (KO) exposed to bacterial endotoxin (lipopolysaccharide; LPS). Higher LPS-induced cytokine expression and basal release were observed in KO FPR2 cultures than in WT cultures, suggesting that a lack of FPR2 enhances the OHCs response to inflammatory stimuli. Pretreatment with MR-39 abolished some of the LPS-induced changes in the expression of genes related to the M1/M2 phenotypes (including Il-1ß, Il-6, Arg1, Il-4, Cd74, Fizz and Cx3cr1) and TNF-α, IL-1ß and IL-4 release in tissue derived from WT but not KO mice. Receptor specificity was confirmed by adding the FPR2 antagonist WRW4, which abolished the abovementioned effects of MR-39. Further biochemical data showed an increase in the phospho-p65/total p65 ratio after LPS stimulation in hippocampal tissues from both WT and KO mice, and MR-39 only reversed this effect on WT OHCs. LPS also increased TRAF6 levels, which are critical for the TLR4-mediated NF-κB pro-inflammatory responses. MR-39 attenuated the LPS-evoked increase in the levels of the NLRP3 and caspase-1 proteins in WT but not KO hippocampal cultures. Since NLRP3 may be involved in the pyroptosis, a lytic type of programmed cell death in which the main role is played by Gasdermin D (GSDMD), we examined the effects of LPS and/or MR-39 on the GSDMD protein level. LPS only increased GSDMD production in the WT tissues, and this effect was ameliorated by MR-39. Collectively, this study indicates that the new FPR2 agonist efficiently abrogates LPS-induced neuroinflammation in an ex vivo model, as evidenced by a decrease in pro-inflammatory cytokine expression and release as well as the downregulation of NLRP3 inflammasome-related pathways.


Asunto(s)
Antiinflamatorios/farmacología , Hipocampo/efectos de los fármacos , Receptores de Formil Péptido/agonistas , Animales , Citocinas/efectos de los fármacos , Hipocampo/metabolismo , Inflamasomas/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos
13.
Pharmacol Rep ; 73(4): 1052-1062, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34031863

RESUMEN

Since affective disorders are considered to be underlain by the immune system malfunction, an important role in their pathophysiology is assigned to the proinflammatory mediators. Recently, chemokines, the group of chemotactic cytokines, have become a focus for basic and clinical scientists in the context of the development and treatment of brain diseases. Among them, chemokine CCL2 and its main receptor CCR2 have become candidate mediators of abnormal brain-immune system dialogue in depression. Besides the chemotactic activity, the CCL2-CCR2 axis is involved in various neurobiological processes, neurogenesis, neurotransmission, neuroinflammation, neurodegeneration, as well as neuroregeneration. Given the range of immunomodulatory possibilities that the CCL2-CCR2 pair can exert on the nervous system, its proinflammatory properties were initially thought to be a major contributor to the development of depressive disorders. However, further research suggests that the malfunctions of the nervous system are rather associated with impaired homeostatic properties manifested by the CCL2-CCR2 dyad dysfunctions. This review aims to present literature data on the action of the CCL2-CCR2 axis in the central nervous system under physiological and pathological conditions, as well as the contribution of this ligand-receptor system to the processes underlying affective disorders. Additionally, this article draws attention to the importance of the CCL2-CRR2 pathway as a potential pharmacological target with antidepressant potential.


Asunto(s)
Antidepresivos/farmacología , Quimiocina CCL2/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Receptores CCR2/metabolismo , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos
14.
Curr Neuropharmacol ; 19(2): 278-293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32851950

RESUMEN

Eicosanoids are arachidonic acid (AA) derivatives belonging to a family of lipid signalling mediators that are engaged in both physiological and pathological processes in the brain. Recently, their implication in the prolonged inflammatory response has become a focus of particular interest because, in contrast to acute inflammation, chronic inflammatory processes within the central nervous system (CNS) are crucial for the development of brain pathologies including depression. The synthesis of eicosanoids is catalysed primarily by cyclooxygenases (COX), which are involved in the production of pro-inflammatory AA metabolites, including prostaglandins and thromboxanes. Moreover, eicosanoid synthesis is catalysed by lipoxygenases (LOXs), which generate both leukotrienes and anti-inflammatory derivatives such as lipoxins. Thus, AA metabolites have double- edged pro-inflammatory and anti-inflammatory, pro-resolving properties, and an imbalance between these metabolites has been proposed as a contributor or even the basis for chronic neuroinflammatory effects. This review focuses on important evidence regarding eicosanoid-related pathways (with special emphasis on prostaglandins and lipoxins) that has added a new layer of complexity to the idea of targeting the double-edged AA-derivative pathways for therapeutic benefits in depression. We also sought to explore future research directions that can support a pro-resolving response to control the balance between eicosanoids and thus to reduce the chronic neuroinflammation that underlies at least a portion of depressive disorders.


Asunto(s)
Depresión , Eicosanoides , Ácido Araquidónico , Humanos , Inflamación , Prostaglandina-Endoperóxido Sintasas
15.
Curr Neuropharmacol ; 18(3): 229-249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31629396

RESUMEN

Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Encefalitis/metabolismo , Encefalitis/patología , Receptores de Formil Péptido/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/inmunología , Isquemia Encefálica/metabolismo , Encefalitis/inmunología , Humanos , Microglía/metabolismo , Receptores de Formil Péptido/inmunología
16.
Int Immunopharmacol ; 73: 527-538, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31176083

RESUMEN

The kynurenine pathway (KP), a major route of tryptophan catabolism, may be associated with the pathophysiology of depressive disorders. KP is responsible for ca. 99% of brain tryptophan metabolism via its degradation to kynurenine (KYN) catalyzed by indoleamine 2,3-dioxygenase (IDO). Some cytokines, such as interferon-γ (IFN-γ) and interleukin (IL)-6 are potent inducers of IDO. KYN is further converted by kynurenine aminotransferase (KAT) to the more neuroprotective kynurenic acid or by kynurenine 3-monooxygenase (KMO) to neurotoxic 3-hydroxykynurenine. The aim of the present study was to delineate whether the administration of imipramine (IMI) to rats subjected to chronic mild stress (CMS) may reverse behavioral changes induced by CMS in association with changes in immune-inflammatory markers and KP. We confirmed that the CMS procedure modeled one of the main symptoms of depression, i.e. anhedonia, and administration of IMI for 5 weeks resulted in a significant reduction in anhedonia in a majority of animals (CMS IMI-R animals), whereas 20% of animals did not respond to IMI treatment (CMS IMI-NR animals). We established that CMS procedure increased IFN-γ and IDO mRNA and decreased KAT II mRNA expression in the rat cortex. In the cortex and hippocampus, IMI treatment and non-responsiveness to IMI (in CMS IMI-NR animals) were associated with increased IL-6 mRNA expression. In the spleen, CMS increased production of IFN-γ and IL-6 proteins, while these cytokines were decreased by IMI in CMS IMI-R animals. Chronic IMI administration to CMS rats decreased IDO and KMO mRNA and protein expression and increased KAT II/KMO mRNA and protein ratio in IMI responders (CMS IMI-R) in comparison to CMS rats. In CMS IMI-NR rats, a significant increase in IDO mRNA expression and protein level in comparison with IMI responders was observed. Our findings indicate that resistance to therapeutic action of IMI could be explained by a deficiency of the inhibitory properties of IMI on IDO, KMO and KYN synthesis in the cortex. We conclude that the antidepressant activity of IMI may, at least in part, be explained by modulatory activities on the KAT II/KMO ratio in brain areas.


Asunto(s)
Depresión/inmunología , Resistencia a Medicamentos/inmunología , Quinurenina/inmunología , Estrés Psicológico/inmunología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Proliferación Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Citocinas/genética , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Imipramina/farmacología , Imipramina/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratas Wistar , Bazo/citología , Estrés Psicológico/tratamiento farmacológico
17.
Pharmacol Rep ; 71(4): 603-613, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31176102

RESUMEN

BACKGROUND: Polydatin (PD) is a compound, originally isolated from the root and rhizome of the Chinese herb Polygonum cuspidatum. To date, various biological properties of this compound, such as analgesic, anti-pyretic or diuretic effects, have been shown. Recently, anti-oxidant and anti-inflammatory properties have been widely postulated, yet PD instability and low bioavailability limit its beneficial actions. Therefore, it has been suggested that an encapsulation process may be a promising strategy for overcoming these limitations and increasing the therapeutic efficacy of PD. METHODS: We examined the effects of PD in two forms, including free and in PD-loaded polymeric nanocapsules, on lipopolysaccharide (LPS)-induced changes in hippocampal organotypic cultures. RESULTS: Our results indicated that free and encapsulated PD diminished cell death processes and attenuated the secretion of pro-inflammatory cytokines induced by LPS administration. Additionally, PD in both forms strongly inhibited the production of nitric oxide and down-regulated the level of iNOS enzyme in LPS-stimulated hippocampal cultures. CONCLUSION: Taken together, our study showed that PD exerts anti-inflammatory and anti-oxidant properties in LPS-treated hippocampal organotypic cultures. Furthermore, we show that the encapsulation procedure preserved the features of the free form of this compound, and therefore, the polymeric nanocapsules containing PD may be used as a novel and promising delivery system in therapeutic strategies.


Asunto(s)
Antiinflamatorios/farmacología , Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Lipopolisacáridos/toxicidad , Nanocápsulas/química , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/toxicidad , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Glucósidos/química , Glucósidos/toxicidad , Hipocampo/inmunología , Hipocampo/patología , Nanocápsulas/toxicidad , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/toxicidad , Ratas Sprague-Dawley , Estilbenos/química , Estilbenos/toxicidad , Propiedades de Superficie , Técnicas de Cultivo de Tejidos , Pruebas de Toxicidad
19.
Mol Neurobiol ; 56(8): 5365-5380, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30610610

RESUMEN

Evidence indicates that adverse experiences in early life may be a factor for immune disturbances leading to the depression in adulthood. Recently, a pivotal role in the pathogenesis of depression has been assigned to the activation of the brain Nod-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the impact of chronic treatment with antidepressant drugs on the behavioral disturbances and the levels of proinflammatory factors in the hippocampus and frontal cortex of adult male rats after prenatal stress exposure. Next, we explored the involvement of the NLRP3 inflammasome-related pathways in the mechanism of antidepressant action. Our study confirmed that chronic antidepressant treatment attenuated depression-like disturbances and exerted an anxiolytic action. All antidepressants diminished the prenatal stress-induced increase in IL-1ß in both brain areas, while IL-18 only in the hippocampus. Moreover, tianeptine administration diminished the increase in CCR2 levels in both brain areas, while in the hippocampus, tianeptine, along with venlafaxine CCL2 and iNOS levels. Next, we observed that in the hippocampus, tianeptine and fluoxetine suppressed upregulation of TLR4. Furthermore, venlafaxine suppressed NFкB p65-subunit phosphorylation, while fluoxetine enhanced the IкB level. Importantly, in the hippocampus, all antidepressants normalized evoked by stress changes in caspase-1 level, while tianeptine and venlafaxine also affect the levels of ASC and NLRP3 subunits. Our results provide new evidence that chronic administration of antidepressants exerts anti-inflammatory effects more pronounced in the hippocampus, through suppression of the NLRP3 inflammasome activation. These effects are accompanied by an improvement in the behavioral dysfunctions evoked by prenatal stress.


Asunto(s)
Antidepresivos/administración & dosificación , Encéfalo/patología , Inflamasomas/metabolismo , Inflamación/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Efectos Tardíos de la Exposición Prenatal/psicología , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/uso terapéutico , Conducta Animal , Femenino , FN-kappa B/metabolismo , Embarazo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
20.
Prog Neuropsychopharmacol Biol Psychiatry ; 80(Pt C): 279-290, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28433460

RESUMEN

The effect of antidepressant drugs on tumor progress is very poorly recognized. The aim of the present study was to examine the effect of individual reactivity to stress and 24-day desipramine (DES) administration on the metastatic colonization of adenocarcinoma MADB 106 cells in the lungs of Wistar rats. Wistar rats were subjected to stress procedure according to the chronic mild stress (CMS) model of depression for two weeks and stress highly-sensitive (SHS) and stress non-reactive (SNR) rats were selected. SHS rats were more prone to cancer metastasis than SNR ones and chronic DES treatment further increased the number of lung metastases by 59% and 50% in comparison to vehicle-treated appropriate control rats. The increase in lung metastases was connected with DES-induced skew macrophage activity towards M2 functional phenotype in SHS and SNR rats. Moreover, during 24h after DES injection in healthy rats, the decreased number of TCD8+ and B cells in SHS and SNR rats as well as NK cell cytotoxic activity in SNR rats could be attributed to the lowered capacity to defend against cancer metastasis observed in chronic DES treated and tumor injected rats.


Asunto(s)
Adenocarcinoma/complicaciones , Adenocarcinoma/secundario , Desipramina/farmacología , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/secundario , Estrés Psicológico/complicaciones , Animales , Antidepresivos/farmacología , Línea Celular Tumoral , Subgrupos Linfocitarios/efectos de los fármacos , Masculino , Ratas , Ratas Endogámicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...