Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Int ; 16(3): 533-550, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38804479

RESUMEN

It is well known that the brain is quite vulnerable to oxidative stress, initiating neuronal loss after ischemia-reperfusion (IR) injury. A potent protective mechanism is ischemic preconditioning (IPC), where proteins are among the primary targets. This study explores redox-active proteins' role in preserving energy supply. Adult rats were divided into the control, IR, and IPC groups. Protein profiling was conducted to identify modified proteins and then verified through activity assays, immunoblot, and immunohistochemical analyses. IPC protected cortex mitochondria, as evidenced by a 2.26-fold increase in superoxide dismutase (SOD) activity. Additionally, stable core subunits of respiratory chain complexes ensured sufficient energy production, supported by a 16.6% increase in ATP synthase activity. In hippocampal cells, IPC led to the downregulation of energy-related dehydrogenases, while a significantly higher level of peroxiredoxin 6 (PRX6) was observed. Notably, IPC significantly enhanced glutathione reductase activity to provide sufficient glutathione to maintain PRX6 function. Astrocytes may mobilize PRX6 to protect neurons during initial ischemic events, by decreased PRX6 positivity in astrocytes, accompanied by an increase in neurons following both IR injury and IPC. Maintained redox signaling via astrocyte-neuron communication triggers IPC's protective state. The partnership among PRX6, SOD, and glutathione reductase appears essential in safeguarding and stabilizing the hippocampus.

2.
Biomedicines ; 11(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37189811

RESUMEN

During aging, heart structure and function gradually deteriorate, which subsequently increases susceptibility to ischemia-reperfusion (IR). Maintenance of Ca2+ homeostasis is critical for cardiac contractility. We used Langendorff's model to monitor the susceptibility of aging (6-, 15-, and 24-month-old) hearts to IR, with a specific focus on Ca2+-handling proteins. IR, but not aging itself, triggered left ventricular changes when the maximum rate of pressure development decreased in 24-month-olds, and the maximum rate of relaxation was most affected in 6-month-old hearts. Aging caused a deprivation of Ca2+-ATPase (SERCA2a), Na+/Ca2+ exchanger, mitochondrial Ca2+ uniporter, and ryanodine receptor contents. IR-induced damage to ryanodine receptor stimulates Ca2+ leakage in 6-month-old hearts and elevated phospholamban (PLN)-to-SERCA2a ratio can slow down Ca2+ reuptake seen at 2-5 µM Ca2+. Total and monomeric PLN mirrored the response of overexpressed SERCA2a after IR in 24-month-old hearts, resulting in stable Ca2+-ATPase activity. Upregulated PLN accelerated inhibition of Ca2+-ATPase activity at low free Ca2+ in 15-month-old after IR, and reduced SERCA2a content subsequently impairs the Ca2+-sequestering capacity. In conclusion, our study suggests that aging is associated with a significant decrease in the abundance and function of Ca2+-handling proteins. However, the IR-induced damage was not increased during aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...