Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 36(21): 5724-35, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27225763

RESUMEN

UNLABELLED: Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory-motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory-motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory-motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory-motor circuits. SIGNIFICANCE STATEMENT: Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory-motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory-motor circuits.


Asunto(s)
Orientación del Axón/fisiología , Neuronas Motoras/fisiología , Neurogénesis/fisiología , Terminales Presinápticos/fisiología , Células Receptoras Sensoriales/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Terminales Presinápticos/ultraestructura , Células Receptoras Sensoriales/citología , Médula Espinal/citología , Médula Espinal/fisiología
2.
Curr Biol ; 25(8): 1063-8, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25866391

RESUMEN

Ambient light affects multiple physiological functions and behaviors, such as circadian rhythms, sleep-wake activities, and development, from flies to mammals. Mammals exhibit a higher body temperature when exposed to acute light compared to when they are exposed to the dark, but the underlying mechanisms are largely unknown. The body temperature of small ectotherms, such as Drosophila, relies on the temperature of their surrounding environment, and these animals exhibit a robust temperature preference behavior. Here, we demonstrate that Drosophila prefer a ∼1° higher temperature when exposed to acute light rather than the dark. This acute light response, light-dependent temperature preference (LDTP), was observed regardless of the time of day, suggesting that LDTP is regulated separately from the circadian clock. However, screening of eye and circadian clock mutants suggests that the circadian clock neurons posterior dorsal neurons 1 (DN1(p)s) and Pigment-Dispersing Factor Receptor (PDFR) play a role in LDTP. To further investigate the role of DN1(p)s in LDTP, PDFR in DN1(p)s was knocked down, resulting in an abnormal LDTP. The phenotype of the pdfr mutant was rescued sufficiently by expressing PDFR in DN1(p)s, indicating that PDFR in DN1(p)s is responsible for LDTP. These results suggest that light positively influences temperature preference via the circadian clock neurons, DN1(p)s, which may result from the integration of light and temperature information. Given that both Drosophila and mammals respond to acute light by increasing their body temperature, the effect of acute light on temperature regulation may be conserved evolutionarily between flies and humans.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Luz , Neuronas/citología , Receptores Acoplados a Proteínas G/metabolismo , Núcleo Supraquiasmático/citología , Temperatura , Animales , Ritmo Circadiano/fisiología , Drosophila , Neuronas/metabolismo
3.
J Vis Exp ; (83): e51097, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24457268

RESUMEN

The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms(1) (,) (2). We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night (3). Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons(3). Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms(4). Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR(3). Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies(5-8). We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.


Asunto(s)
Conducta Animal/fisiología , Regulación de la Temperatura Corporal/fisiología , Ritmo Circadiano/fisiología , Drosophila/fisiología , Animales , Locomoción/fisiología , Temperatura
4.
Cell Rep ; 5(3): 748-58, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24210822

RESUMEN

In mammalian spinal cord, group Ia proprioceptive afferents form selective monosynaptic connections with a select group of motor pool targets. The extent to which sensory recognition of motor neurons contributes to the selectivity of sensory-motor connections remains unclear. We show here that proprioceptive sensory afferents that express PlexinD1 avoid forming monosynaptic connections with neurons in Sema3E(+) motor pools yet are able to form direct connections with neurons in Sema3E(off) motor pools. Anatomical and electrophysiological analysis of mice in which Sema3E-PlexinD1 signaling has been deregulated or inactivated genetically reveals that repellent signaling underlies aspects of the specificity of monosynaptic sensory-motor connectivity in these reflex arcs. A semaphorin-based system of motor neuron recognition and repulsion therefore contributes to the formation of specific sensory-motor connections in mammalian spinal cord.


Asunto(s)
Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Proteínas del Citoesqueleto , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/citología , Semaforinas , Células Receptoras Sensoriales/citología , Transducción de Señal , Especificidad por Sustrato
5.
J Neurosci ; 33(3): 894-901, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325228

RESUMEN

Temperature sensation has a strong impact on animal behavior and is necessary for animals to avoid exposure to harmful temperatures. It is now well known that thermoTRP (transient receptor potential) channels in thermosensory neurons detect a variable range of temperature stimuli. However, little is known about how a range of temperature information is relayed and integrated in the neural circuits. Here, we show novel temperature integration between two warm inputs via Drosophila TRPA channels, TRPA1 and Pyrexia (Pyx). The internal AC (anterior cell) thermosensory neurons, which express TRPA1, detect warm temperatures and mediate temperature preference behavior. We found that the AC neurons were activated twice when subjected to increasing temperatures. The first response was at ∼25°C via TRPA1 channel, which is expressed in the AC neurons. The second response was at ∼27°C via the second antennal segments, indicating that the second antennal segments are involved in the detection of warm temperatures. Further analysis reveals that pyx-Gal4-expressing neurons have synapses on the AC neurons and that mutation of pyx eliminates the second response of the AC neurons. These data suggest that AC neurons integrate both their own TRPA1-dependent temperature responses and a Pyx-dependent temperature response from the second antennal segments. Our data reveal the first identification of temperature integration, which combines warm temperature information from peripheral to central neurons and provides the possibility that temperature integration is involved in the plasticity of behavioral outputs.


Asunto(s)
Encéfalo/fisiología , Proteínas de Drosophila/metabolismo , Neuronas/fisiología , Canales Catiónicos TRPC/metabolismo , Sensación Térmica/fisiología , Animales , Antenas de Artrópodos/fisiología , Drosophila , Proteínas de Drosophila/genética , Canales Iónicos , Vías Nerviosas/fisiología , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética , Temperatura
6.
J Neurosci ; 32(30): 10396-407, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22836272

RESUMEN

RhoA is a key regulator of cytoskeletal dynamics with a variety of effects on cellular processes. Loss of RhoA in neural progenitor cells disrupts adherens junctions and causes disorganization of the neuroepithelium in the developing nervous system. However, it remains essentially unknown how the loss of RhoA physiologically affects neural circuit formation. Here we show that proper neuroepithelial organization maintained by RhoA GTPase in both the ventral and dorsal spinal cord is critical for left-right locomotor behavior. We examined the roles of RhoA in the ventral and dorsal spinal cord by deleting the gene in neural progenitors using Olig2-Cre and Wnt1-Cre mice, respectively. RhoA-deleted neural progenitors in both mutants exhibit defects in the formation of apical adherens junctions and disorganization of the neuroepithelium. Consequently, the ventricular zone and lumen of the dysplastic region are lost, causing the left and right sides of the gray matter to be directly connected. Furthermore, the dysplastic region lacks ephrinB3 expression at the midline that is required for preventing EphA4-expressing corticospinal neurons and spinal interneurons from crossing the midline. As a result, aberrant neuronal projections are observed in that region. Finally, both RhoA mutants develop a rabbit-like hopping gait. These results demonstrate that RhoA functions to maintain neuroepithelial structures in the developing spinal cord and that proper organization of the neuroepithelium is required for appropriate left-right motor behavior.


Asunto(s)
Marcha/fisiología , Actividad Motora/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Médula Espinal/crecimiento & desarrollo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Diferenciación Celular/fisiología , Efrina-B3/metabolismo , Ratones , Ratones Transgénicos , Vías Nerviosas/metabolismo , Médula Espinal/metabolismo
7.
Front Mol Neurosci ; 5: 67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22661927

RESUMEN

RhoA, a member of the Rho family small GTPases, has been shown to play important roles in axon guidance. However, to date, the physiological function of RhoA in axon guidance events in vivo has not been determined genetically in animals. Here we show that RhoA mRNA is strongly expressed by sensory neurons in the developing mouse dorsal root ganglia (DRG). We have deleted RhoA in sensory neurons of the DRG using RhoA-floxed mice under the Wnt1-Cre driver in which Cre is strongly expressed in sensory neurons. Peripheral projections of sensory neurons appear normal and there are no detectable defects in the central projections of either cutaneous or proprioceptive sensory neurons in RhoA(f/f); Wnt1-Cre mice. Furthermore, a co-culture assay using DRG explants from RhoA(f/f); Wnt1-Cre embryos, and 293T cells expressing semaphorin3A (Sema3A) reveals that RhoA is not required for Sema3A-mediated axonal repulsion of sensory neurons. Expression of RhoC, a closely related family member, is increased in RhoA-deficient sensory neurons and may play a compensatory role in this context. Taken together, these genetic studies demonstrate that RhoA is dispensable for peripheral and central projections of sensory neurons in the DRG.

8.
Development ; 138(18): 4085-95, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21831918

RESUMEN

Different types of sensory neurons in the dorsal root ganglia project axons to the spinal cord to convey peripheral information to the central nervous system. Whereas most proprioceptive axons enter the spinal cord medially, cutaneous axons typically do so laterally. Because heavily myelinated proprioceptive axons project to the ventral spinal cord, proprioceptive axons and their associated oligodendrocytes avoid the superficial dorsal horn. However, it remains unclear whether their exclusion from the superficial dorsal horn is an important aspect of neural circuitry. Here we show that a mouse null mutation of Sema6d results in ectopic placement of the shafts of proprioceptive axons and their associated oligodendrocytes in the superficial dorsal horn, disrupting its synaptic organization. Anatomical and electrophysiological analyses show that proper axon positioning does not seem to be required for sensory afferent connectivity with motor neurons. Furthermore, ablation of oligodendrocytes from Sema6d mutants reveals that ectopic oligodendrocytes, but not proprioceptive axons, inhibit synapse formation in Sema6d mutants. Our findings provide new insights into the relationship between oligodendrocytes and synapse formation in vivo, which might be an important element in controlling the development of neural wiring in the central nervous system.


Asunto(s)
Coristoma/genética , Oligodendroglía , Semaforinas/genética , Enfermedades de la Médula Espinal/genética , Sinapsis/genética , Animales , Animales Modificados Genéticamente , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Ratones , Modelos Biológicos , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Neurogénesis/genética , Neurogénesis/fisiología , Propiocepción/genética , Semaforinas/fisiología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Transducción de Señal/genética , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Médula Espinal/patología , Enfermedades de la Médula Espinal/metabolismo , Enfermedades de la Médula Espinal/patología , Sinapsis/metabolismo , Sinapsis/patología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
9.
Proc Natl Acad Sci U S A ; 108(18): 7607-12, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21502507

RESUMEN

The organization of neural progenitors in the developing mammalian neuroepithelium is marked by cadherin-based adherens junctions. Whereas RhoA, a founding member of the small Rho GTPase family, has been shown to play important roles in epithelial adherens junctions, its physiological roles in neural development remain uncertain due to the lack of specific loss-of-function studies. Here, we show that RhoA protein accumulates at adherens junctions in the developing mouse brain and colocalizes to the cadherin-catenin complex. Conditional deletion of RhoA in midbrain and forebrain neural progenitors using Wnt1-Cre and Foxg1-Cre mice, respectively, disrupts apical adherens junctions and causes massive dysplasia of the brain. Furthermore, RhoA-deficient neural progenitor cells exhibit accelerated proliferation, reduction of cell- cycle exit, and increased expression of downstream target genes of the hedgehog pathway. Consequently, both lines of conditional RhoA-deficient embryos exhibit expansion of neural progenitor cells and exencephaly-like protrusions. These results demonstrate a critical role of RhoA in the maintenance of apical adherens junctions and the regulation of neural progenitor proliferation in the developing mammalian brain.


Asunto(s)
Uniones Adherentes/metabolismo , Encéfalo/embriología , Proliferación Celular , Células-Madre Neurales/metabolismo , Proteína de Unión al GTP rhoA/deficiencia , Animales , Bromodesoxiuridina , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Indoles , Ratones , Ratones Mutantes , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...