Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Res Sq ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464126

RESUMEN

Purpose: HER2(+) metastatic breast cancer (mBC) is one of the most aggressive and lethal cancer types among females. While initially effective, targeted therapeutic approaches with trastuzumab and pertuzumab antibodies and antibody-drug conjugates (ADC) lack long-term efficacy against HER2(+) mBC and can cause severe systemic toxicity due to off-target effects. Therefore, the development of novel targeted delivery platforms that minimize toxicity and increase therapeutic efficacy is critical to the treatment of HER2(+) breast cancer (BC). A pretargeting delivery platform can minimize the non-specific accumulation and off-target toxicity caused by traditional one-step delivery method by separating the single delivery step into a pre-targeting step with high-affinity biomarker binding ligand followed by the subsequent delivery step of therapeutic component with fast clearance. Each delivery component is functionalized with bioorthogonal reactive groups that quickly react in situ, forming cross-linked clusters on the cell surface, which facilitates rapid internalization and intracellular delivery of therapeutics. Procedures: We have successfully developed a click chemistry-based pretargeting platform for HER2(+) BC enabling PET-MR image guidance for reduced radiation dose, high sensitivity, and good soft tissue contrast. Radiolabeled trastuzumab and superparamagnetic iron-oxide carriers (uSPIO) were selected as pretargeting and delivery components, respectively. HER2(+) BT-474 cell line and corresponding xenografts were used for in vitro and in vivo studies. Results: An enhanced tumor accumulation as well as tumor-to-organ accumulation ratio was observed in pretargeted mice up to 24 h post uSPIO injection. A 40% local T1 decrease in the pretargeted mice tumor was observed within 4 h, and an overall 15% T1 drop was retained for 24 h post uSPIO injection. Conclusions: Prolonged tumor retention and increased tumor-to-organ accumulation ratio provided a solid foundation for pretargeted image-guided delivery approach for in vivo applications.

2.
Biomed Opt Express ; 15(3): 1847-1860, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495705

RESUMEN

This paper introduces a deconvolution-based method to enhance the elevation resolution of a linear array-based three-dimensional (3D) photoacoustic (PA) imaging system. PA imaging combines the high contrast of optical imaging with the deep, multi-centimeter spatial resolution of ultrasound (US) imaging, providing structural and functional information about biological tissues. Linear array-based 3D PA imaging is easily accessible and applicable for ex vivo studies, small animal research, and clinical applications in humans. However, its elevation resolution is limited by the acoustic lens geometry, which establishes a single elevation focus. Previous work used synthetic aperture focusing (SAF) to enhance elevation resolution, but the resolution achievable by SAF is constrained by the size of the elevation focus. Here, we introduce the application of Richardson-Lucy deconvolution, grounded in simulated point-spread-functions, to surpass the elevation resolution attainable with SAF alone. We validated this approach using both simulation and experimental data, demonstrating that the full-width-at-half-maximum of point targets on the elevation plane was reduced compared to using SAF only, suggesting resolution improvement. This method shows promise for improving 3D image quality of existing linear array-based PA imaging systems, offering potential benefits for disease diagnosis and monitoring.

3.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076994

RESUMEN

Prostate cancer (PCa) is known as one of the most prevalent and fatal cancer types. This report describes an MRI-compatible photoacoustic/ultrasound (PA/US) imaging platform to improve the diagnosis of PCa. In the proposed solution, PA imaging, which offers real-time, non-ionizing imaging with high sensitivity and specificity, is combined with MRI, aiming to overcome PA's limited field of view (FOV) and make PA scalable for translation to clinical settings. Central to the design of the system is a reflector-based transrectal probing mechanism composed of MRI-compatible materials. The linear transducer with a center hole for optical fiber delivery can be mechanically actuated to form a multi-angled scan, allowing PA/US imaging from varied cross-sectional views. Performance assessment was carried out in phantom and ex-vivo settings. We confirmed the MRI compatibility of the system and demonstrated the feasibility of its tri-modal imaging capability by visualizing a tubing phantom containing contrast agents. The ex-vivo evaluation of targeted tumor imaging capability was performed with a mouse liver sample expressing PSMA-positive tumors, affirming the system's compatibility in spectroscopic PA (sPA) imaging with biological tissue. These results support the feasibility of the in-bore MRI-compatible transrectal PA and US and the potential clinical adaptability.

4.
JAMA Netw Open ; 6(10): e2340580, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37902750

RESUMEN

Importance: Pilot studies that involved early imaging of the 18 kDa translocator protein (TSPO) using positron emission tomography (PET) indicated high levels of TSPO in the brains of active or former National Football League (NFL) players. If validated further in larger studies, those findings may have implications for athletes involved in collision sport. Objective: To test for higher TSPO that marks brain injury and repair in a relatively large, unique cohort of former NFL players compared with former elite, noncollision sport athletes. Design, Setting, and Participants: This cross-sectional study used carbon 11-labeled N,N-diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide positron emission tomography ([11C]DPA-713 PET) data from former NFL players within 12 years of last participation in the NFL and elite noncollision sport athletes from across the US. Participants were enrolled between April 2018 and February 2023. Main outcomes and measures: Regional [11C]DPA-713 total distribution volume from [11C]DPA-713 PET that is a measure of regional brain TSPO; regional brain volumes on magnetic resonance imaging; neuropsychological performance, including attention, executive function, and memory domains. Results: This study included 27 former NFL players and 27 former elite, noncollision sport athletes. Regional TSPO levels were higher in former NFL players compared with former elite, noncollision sport athletes (unstandardized ß coefficient, 1.08; SE, 0.22; 95% CI, 0.65 to 1.52; P < .001). The magnitude of the group difference depended on region, with largest group differences in TSPO in cingulate and frontal cortices as well as hippocampus. Compared with noncollision sport athletes, former NFL players performed worse in learning (mean difference [MD], -0.70; 95% CI, -1.14 to -0.25; P = .003) and memory (MD, -0.77; 95% CI, -1.24 to -0.30; P = .002), with no correlation between total gray matter TSPO and these cognitive domains. Conclusions and relevance: In this cross-sectional study using [11C]DPA-713 PET, higher brain TSPO was found in former NFL players compared with noncollision sport athletes. This finding is consistent with neuroimmune activation even after cessation of NFL play. Future longitudinal [11C]DPA-713 PET and neuropsychological testing promises to inform whether neuroimmune-modulating therapy may be warranted.


Asunto(s)
Lesiones Encefálicas , Fútbol Americano , Humanos , Estudios Transversales , Neuroimagen , Receptores de GABA
5.
Eur J Nucl Med Mol Imaging ; 50(12): 3659-3665, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37458759

RESUMEN

PURPOSE: Soluble epoxide hydrolase (sEH) is an enzyme that shapes immune signaling through its role in maintaining the homeostasis of polyunsaturated fatty acids and their related byproducts. [18F]FNDP is a radiotracer developed for use with positron emission tomography (PET) to image sEH, which has been applied to imaging sEH in the brains of healthy individuals. Here, we report the test-retest repeatability of [18F]FNDP brain PET binding and [18F]FNDP whole-body dosimetry in healthy individuals. METHODS: Seven healthy adults (4 men, 3 women, ages 40.1 ± 4.6 years) completed [18F]FNDP brain PET on two occasions within a period of 14 days in a test-retest study design. [18F]FNDP regional total distribution volume (VT) values were derived from modeling time-activity data with a metabolite-corrected arterial input function. Test-retest variability, mean absolute deviation, and intraclass correlation coefficient (ICC) were investigated. Six other healthy adults (3 men, 3 women, ages 46.0 ± 7.0 years) underwent [18F]FNDP PET/CT for whole-body dosimetry, which was acquired over 4.5 h, starting immediately after radiotracer administration. Organ-absorbed doses and the effective dose were then estimated. RESULTS: The mean test-retest difference in regional VT (ΔVT) was 0.82 ± 5.17%. The mean absolute difference in regional VT was 4.01 ± 3.33%. The ICC across different brain regions ranged from 0.92 to 0.99. The organs with the greatest radiation-absorbed doses included the gallbladder (0.081 ± 0.024 mSv/MBq), followed by liver (0.077 ± 0.018 mSv/MBq) and kidneys (0.063 ± 0.006 mSv/MBq). The effective dose was 0.020 ± 0.003 mSv/MBq. CONCLUSION: These data support a favorable test-retest repeatability of [18F]FNDP brain PET regional VT. The radiation dose to humans from each [18F]FNDP PET scan is similar to that of other 18F-based PET radiotracers.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Masculino , Adulto , Humanos , Femenino , Tomografía de Emisión de Positrones/métodos , Radiometría , Dosis de Radiación , Neuroimagen
6.
AIDS ; 37(9): 1419-1424, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37070549

RESUMEN

OBJECTIVE: Neuroimmune activation is a putative driver of cognitive impairment in people with HIV (PWH), even in the age of modern antiretroviral therapy. Nevertheless, imaging of the microglial marker, the 18 kDa translocator protein (TSPO), with positron emission tomography (PET) in treated PWH has yielded inconclusive findings. One potential reason for the varied TSPO results is a lack of cell-type specificity of the TSPO target. DESIGN: [ 11 C]CPPC, 5-cyano- N -(4-(4-[ 11 C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxaminde, is a radiotracer for use with PET to image the colony stimulating factor 1 receptor (CSF1R). The CSF1R is expressed on microglia and central nervous system macrophages, with little expression on other cell types. We used [ 11 C]CPPC PET in virally-suppressed- (VS)-PWH and HIV-uninfected individuals to estimate the effect sizes of higher CSF1R in the brains of VS-PWH. METHODS: Sixteen VS-PWH and 15 HIV-uninfected individuals completed [ 11 C]CPPC PET. [ 11 C]CPPC binding (V T ) in nine regions was estimated using a one-tissue compartmental model with a metabolite-corrected arterial input function, and compared between groups. RESULTS: Regional [ 11 C]CPPC V T did not significantly differ between groups after age- and sex- adjustment [unstandardized beta coefficient ( B ) = 1.84, standard error (SE) = 1.18, P  = 0.13]. The effect size was moderate [Cohen's d  = 0.56, 95% confidence interval (CI) -0.16, 1.28), with strongest trend of higher V T in VS-PWH in striatum and parietal cortex (each P  = 0.04; Cohen's d  = 0.71 and 0.72, respectively). CONCLUSIONS: A group difference in [ 11 C]CPPC V T was not observed between VS-PWH and HIV-uninfected individuals in this pilot, although the observed effect sizes suggest the study was underpowered to detect regional group differences in binding.


Asunto(s)
Encéfalo , Infecciones por VIH , Receptor de Factor Estimulante de Colonias de Macrófagos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Microglía , Tomografía de Emisión de Positrones/métodos , Receptores de GABA , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Imagen Molecular
7.
Eur J Nucl Med Mol Imaging ; 50(8): 2386-2393, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877235

RESUMEN

PURPOSE: We report findings from the first-in-human study of [11C]MDTC, a radiotracer developed to image the cannabinoid receptor type 2 (CB2R) with positron emission tomography (PET). METHODS: Ten healthy adults were imaged according to a 90-min dynamic PET protocol after bolus intravenous injection of [11C]MDTC. Five participants also completed a second [11C]MDTC PET scan to assess test-retest reproducibility of receptor-binding outcomes. The kinetic behavior of [11C]MDTC in human brain was evaluated using tissue compartmental modeling. Four additional healthy adults completed whole-body [11C]MDTC PET/CT to calculate organ doses and the whole-body effective dose. RESULTS: [11C]MDTC brain PET and [11C]MDTC whole-body PET/CT was well-tolerated. A murine study found evidence of brain-penetrant radiometabolites. The model of choice for fitting the time activity curves (TACs) across brain regions of interest was a three-tissue compartment model that includes a separate input function and compartment for the brain-penetrant metabolites. Regional distribution volume (VT) values were low, indicating low CB2R expression in the brain. Test-retest reliability of VT demonstrated a mean absolute variability of 9.91%. The measured effective dose of [11C]MDTC was 5.29 µSv/MBq. CONCLUSION: These data demonstrate the safety and pharmacokinetic behavior of [11C]MDTC with PET in healthy human brain. Future studies identifying radiometabolites of [11C]MDTC are recommended before applying [11C]MDTC PET to assess the high expression of the CB2R by activated microglia in human brain.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Adulto , Humanos , Animales , Ratones , Reproducibilidad de los Resultados , Radiofármacos/farmacocinética , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Receptores de Cannabinoides/metabolismo
8.
Photoacoustics ; 27: 100378, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36068804

RESUMEN

This study presents a system-level optimization of spectroscopic photoacoustic (PA) imaging for prostate cancer (PCa) detection in three folds. First, we present a spectral unmixing model to segregate spectral system error (SSE). We constructed two noise models (NMs) for the laser spectrotemporal fluctuation and the ultrasound system noise. We used these NMs in linear spectral unmixing to denoise and to achieve high temporal resolution. Second, we employed a simulation-aided wavelength optimization to select the most effective subset of wavelengths. NMs again were considered so that selected wavelengths were not only robust to the collinearity of optical absorbance, but also to noise. Third, we quantified the effect of frame averaging on improving spectral unmixing accuracy through theoretical analysis and numerical validation. To validate the whole framework, we performed comprehensive studies in simulation and an in vivo experiment which evaluated prostate-specific membrane antigen (PSMA) expression in PCa on a mice model. Both simulation analysis and in vivo studies confirmed that the proposed framework significantly enhances image signal-to-noise ratio (SNR) and spectral unmixing accuracy. It enabled more sensitive and faster PCa detection. Moreover, the proposed framework can be generalized to other spectroscopic PA imaging studies for noise reduction, wavelength optimization, and higher temporal resolution.

9.
EJNMMI Res ; 12(1): 64, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175737

RESUMEN

PURPOSE: Study of the contribution of microglia to onset and course of several neuropsychiatric conditions is challenged by the fact that these resident immune cells often take on different phenotypes and functions outside the living brain. Imaging microglia with radiotracers developed for use with positron emission tomography (PET) allows researchers to study these cells in their native tissue microenvironment. However, many relevant microglial imaging targets such as the 18 kDa translocator protein are also expressed on non-microglial cells, which can complicate the interpretation of PET findings. 11C-CPPC was developed to image the macrophage colony-stimulating factor 1 receptor, a target that is expressed largely by microglia relative to other cell types in the brain. Our prior work with 11C-CPPC demonstrated its high, specific uptake in brains of rodents and nonhuman primates with neuroinflammation, which supports the current first-in-human evaluation of its pharmacokinetic behavior in the brains of healthy individuals. METHODS: Eight healthy nonsmoker adults completed a 90-min dynamic PET scan that began with bolus injection of 11C-CPPC. Arterial blood sampling was collected in order to generate a metabolite-corrected arterial input function. Tissue time-activity curves (TACs) were generated using regions of interest identified from co-registered magnetic resonance imaging data. One- and two-tissue compartmental models (1TCM and 2TCM) as well as Logan graphical analysis were compared. RESULTS: Cortical and subcortical tissue TACs peaked by 37.5 min post-injection of 11C-CPPC and then declined. The 1TCM was preferred. Total distribution volume (VT) values computed from 1TCM aligned well with those from Logan graphical analysis (t* = 30), with VT values relatively high in thalamus, striatum, and most cortical regions, and with relatively lower VT in hippocampus, total white matter, and cerebellar cortex. CONCLUSION: Our results extend support for the use of 11C-CPPC with PET to study microglia in the human brain.

10.
Pharmaceutics ; 14(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336029

RESUMEN

The chemokine receptor 4 (CXCR4) is a promising diagnostic and therapeutic target for the management of various cancers. CXCR4 has been utilized in immunotherapy, targeted drug delivery, and endoradiotherapy. Poly(amidoamine) [PAMAM] dendrimers are well-defined polymers with unique properties that have been used in the fabrication of nanomaterials for several biomedical applications. Here, we describe the formulation and pharmacokinetics of generation-5 CXCR4-targeted PAMAM (G5-X4) dendrimers. G5-X4 demonstrated an IC50 of 0.95 nM to CXCR4 against CXCL12-Red in CHO-SNAP-CXCR4 cells. Single-photon computed tomography/computed tomography imaging and biodistribution studies of 111In-labeled G5-X4 showed enhanced uptake in subcutaneous U87 glioblastoma tumors stably expressing CXCR4 with 8.2 ± 2.1, 8.4 ± 0.5, 11.5 ± 0.9, 10.4 ± 2.6, and 8.8 ± 0.5% injected dose per gram of tissue at 1, 3, 24, 48, and 120 h after injection, respectively. Specific accumulation of [111In]G5-X4 in CXCR4-positive tumors was inhibited by the peptidomimetic CXCR4 inhibitor, POL3026. Our results demonstrate that while CXCR4 targeting is beneficial for tumor accumulation at early time points, differences in tumor uptake are diminished over time as passive accumulation takes place. This study further confirms the applicability of PAMAM dendrimers for imaging and therapeutic applications. It also emphasizes careful consideration of image acquisition and/or treatment times when designing dendritic nanoplatforms for tumor targeting.

11.
JCI Insight ; 7(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35014627

RESUMEN

Tools for noninvasive detection of bacterial pathogens are needed but are not currently available for clinical use. We have previously shown that para-aminobenzoic acid (PABA) rapidly accumulates in a wide range of pathogenic bacteria, motivating the development of related PET radiotracers. In this study, 11C-PABA PET imaging was used to accurately detect and monitor infections due to pyogenic bacteria in multiple clinically relevant animal models. 11C-PABA PET imaging selectively detected infections in muscle, intervertebral discs, and methicillin-resistant Staphylococcus aureus-infected orthopedic implants. In what we believe to be first-in-human studies in healthy participants, 11C-PABA was safe, well-tolerated, and had a favorable biodistribution, with low background activity in the lungs, muscles, and brain. 11C-PABA has the potential for clinical translation to detect and localize a broad range of bacteria.


Asunto(s)
Ácido 4-Aminobenzoico/análisis , Radioisótopos de Carbono/análisis , Staphylococcus aureus Resistente a Meticilina , Tomografía de Emisión de Positrones/métodos , Infecciones Estafilocócicas , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/farmacocinética , Adulto , Animales , Radioisótopos de Carbono/química , Radioisótopos de Carbono/metabolismo , Radioisótopos de Carbono/farmacocinética , Medios de Contraste/análisis , Medios de Contraste/química , Medios de Contraste/metabolismo , Medios de Contraste/farmacocinética , Femenino , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Conejos , Ratas , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/microbiología , Distribución Tisular , Adulto Joven
12.
Nat Protoc ; 17(1): 76-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903870

RESUMEN

The blood-brain barrier (BBB) is the main obstacle to the effective delivery of therapeutic agents to the brain, compromising treatment efficacy for a variety of neurological disorders. Intra-arterial (IA) injection of hyperosmotic mannitol has been used to permeabilize the BBB and improve parenchymal entry of therapeutic agents following IA delivery in preclinical and clinical studies. However, the reproducibility of IA BBB manipulation is low and therapeutic outcomes are variable. We demonstrated that this variability could be highly reduced or eliminated when the procedure of osmotic BBB opening is performed under the guidance of interventional MRI. Studies have reported the utility and applicability of this technique in several species. Here we describe a protocol to open the BBB by IA injection of hyperosmotic mannitol under the guidance of MRI in mice. The procedures (from preoperative preparation to postoperative care) can be completed within ~1.5 h, and the skill level required is on par with the induction of middle cerebral artery occlusion in small animals. This MRI-guided BBB opening technique in mice can be utilized to study the biology of the BBB and improve the delivery of various therapeutic agents to the brain.


Asunto(s)
Barrera Hematoencefálica , Inyecciones Intraarteriales , Imagen por Resonancia Magnética , Manitol , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Masculino , Manitol/administración & dosificación , Manitol/farmacología , Ratones , Ratones SCID , Presión Osmótica
13.
Biomacromolecules ; 22(11): 4606-4617, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34704434

RESUMEN

Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.


Asunto(s)
Neoplasias de la Mama , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Ratones , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
14.
Nanoscale ; 13(20): 9217-9228, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33978042

RESUMEN

Prostate-specific membrane antigen (PSMA) is a promising diagnostic and therapeutic target for prostate cancer (PC). Poly(amidoamine) [PAMAM] dendrimers serve as versatile scaffolds for imaging agents and drug delivery that can be tailored to different sizes and compositions depending upon the application. We have developed PSMA-targeted PAMAM dendrimers for real-time detection of PC using fluorescence (FL) and photoacoustic (PA) imaging. A generation-4, ethylenediamine core, amine-terminated dendrimer was consecutively conjugated with on average 10 lysine-glutamate-urea PSMA targeting moieties and a different number of sulfo-cyanine7.5 (Cy7.5) near-infrared dyes (2, 4, 6 and 8 denoted as conjugates II, III, IV and V, respectively). The remaining terminal primary amines were capped with butane-1,2-diol functionalities. We also prepared a conjugate composed of Cy7.5-lysine-suberic acid-lysine glutamate-urea (I) and control dendrimer conjugate (VI). Among all conjugates, IV showed superior in vivo target specificity in male NOD-SCID mice bearing isogenic PSMA+ PC3 PIP and PSMA- PC3 flu xenografts and suitable physicochemical properties for FL and PA imaging. Such agents may prove useful in PC cancer detection and subsequent surgical guidance during excision of PSMA-expressing lesions.


Asunto(s)
Medios de Contraste , Neoplasias de la Próstata , Animales , Antígenos de Superficie , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glutamato Carboxipeptidasa II , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Próstata/diagnóstico por imagen
15.
Eur J Nucl Med Mol Imaging ; 48(10): 3122-3128, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585963

RESUMEN

PURPOSE: Soluble epoxide hydrolase (sEH) is an enzyme with putative effect on neuroinflammation through its influence on the homeostasis of polyunsaturated fatty acids and related byproducts. sEH is an enzyme that metabolizes anti-inflammatory epoxy fatty acids to the corresponding, relatively inert 1,2-diols. A high availability or activity of sEH promotes vasoconstriction and inflammation in local tissues that may be linked to neuropsychiatric diseases. We developed [18F]FNDP to study sEH in vivo with positron emission tomography (PET). METHODS: Brain PET using bolus injection of [18F]FNDP followed by emission imaging lasting 90 or 180 min was completed in healthy adults (5 males, 2 females, ages 40-53 years). The kinetic behavior of [18F]FNDP was evaluated using a radiometabolite-corrected arterial plasma input function with compartmental or graphical modeling approaches. RESULTS: [18F]FNDP PET was without adverse effects. Akaike information criterion favored the two-tissue compartment model (2TCM) in all ten regions of interest. Regional total distribution volume (VT) values from each compartmental model and Logan analysis were generally well identified except for corpus callosum VT using the 2TCM. Logan analysis was assessed as the choice model due to stability of regional VT values from 90-min data and due to high correlation of Logan-derived regional VT values with those from the 2TCM. [18F]FNDP binding was higher in human cerebellar cortex and thalamus relative to supratentorial cortical regions, which aligns with reported expression patterns of the epoxide hydrolase 2 gene in human brain. CONCLUSION: These data support further use of [18F]FNDP PET to study sEH in human brain.


Asunto(s)
Epóxido Hidrolasas , Tomografía de Emisión de Positrones , Adulto , Encéfalo/diagnóstico por imagen , Epóxido Hidrolasas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen
16.
EJNMMI Res ; 10(1): 67, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572592

RESUMEN

PURPOSE: Soluble epoxide hydrolase (sEH) is a promising candidate positron emission tomography (PET) imaging biomarker altered in various disorders, including vascular cognitive impairment (VCI), Alzheimer's disease (AD), Parkinson's disease (PD), stroke, and depression, known to regulate levels of epoxyeicosatrienoic acids (EETs) and play an important role in neurovascular coupling. [18F]FNDP, a PET radiotracer for imaging sEH, was evaluated through quantitative PET imaging in the baboon brain, radiometabolite analysis, and radiation dosimetry estimate. METHODS: Baboon [18F]FNDP dynamic PET studies were performed at baseline and with blocking doses of the selective sEH inhibitor AR-9281 to evaluate sEH binding specificity. Radiometabolites of [18F]FNDP in mice and baboons were measured by high-performance liquid chromatography. Regional brain distribution volume (VT) of [18F]FNDP was computed from PET using radiometabolite-corrected arterial input functions. Full body distribution of [18F]FNDP was studied in CD-1 mice, and the human effective dose was estimated using OLINDA/EXM software. RESULTS: [18F]FNDP exhibited high and rapid brain uptake in baboons. AR-9281 blocked [18F]FNDP uptake dose-dependently with a baseline VT of 10.9 ± 2.4 mL/mL and a high-dose blocking VT of 1.0 ± 0.09 mL/mL, indicating substantial binding specificity (91.70 ± 1.74%). The VND was estimated as 0.865 ± 0.066 mL/mL. The estimated occupancy values of AR-9281 were 99.2 ± 1.1% for 1 mg/kg, 88.6 ± 1.3% for 0.1 mg/kg, and 33.8 ± 3.8% for 0.02 mg/kg. Murine biodistribution of [18F]FNDP enabled an effective dose estimate for humans (0.032 mSv/MBq). [18F]FNDP forms hydrophilic radiometabolites in murine and non-human primate plasma. However, only minute amounts of the radiometabolites entered the animal brain (< 2% in mice). CONCLUSIONS: [18F]FNDP is a highly sEH-specific radiotracer that is suitable for quantitative PET imaging in the baboon brain. [18F]FNDP holds promise for translation to human subjects.

17.
J Nucl Med ; 61(11): 1665-1671, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32198314

RESUMEN

para-Aminobenzoic acid (PABA) has been previously used as an exogenous marker to verify completion of 24-h urine sampling. Therefore, we hypothesized that PABA radiolabeled with 11C might allow high-quality dynamic PET of the kidneys with less radiation exposure than other agents because of its shorter biologic and physical half-life. We evaluated if 11C-PABA can visualize renal anatomy and quantify function in healthy rats and rabbits and in a first-in-humans study on healthy volunteers. Methods: Healthy rats and rabbits were injected with 11C-PABA intravenously. Subsequently, dynamic PET was performed, followed by postmortem tissue-biodistribution studies. 11C-PABA PET was directly compared with the current standard, 99mTc-mercaptoacetyltriglycin, in rats. Three healthy human subjects also underwent dynamic PET after intravenous injection of 11C-PABA. Results: In healthy rats and rabbits, dynamic PET demonstrated a rapid accumulation of 11C-PABA in the renal cortex, followed by rapid excretion through the pelvicalyceal system. In humans, 11C-PABA PET was safe and well tolerated. There were no adverse or clinically detectable pharmacologic effects in any subject. The cortex was delineated on PET, and the activity gradually transited to the medulla and then pelvis with high spatiotemporal resolution. Conclusion:11C-PABA demonstrated fast renal excretion with a very low background signal in animals and humans. These results suggest that 11C-PABA might be used as a novel radiotracer for functional renal imaging, providing high-quality spatiotemporal images with low radiation exposure.


Asunto(s)
Ácido 4-Aminobenzoico/farmacocinética , Radioisótopos de Carbono/farmacocinética , Riñón/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Adulto , Animales , Femenino , Humanos , Riñón/metabolismo , Masculino , Conejos , Dosis de Radiación , Ratas , Ratas Wistar
18.
J Nucl Med ; 61(3): 423-426, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31420499

RESUMEN

Emerging evidence supports a hypothesized role for the α7-nicotinic acetylcholine receptor (α7-nAChR) in the pathophysiology of Alzheimer's disease. 18F-ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-18F-fluorodibenzo[b,d]thiophene 5,5-dioxide) is a radioligand for estimating the availability of α7-nAChR in the brain in vivo with PET. Methods: In this cross-sectional study, 14 patients with mild cognitive impairment (MCI), a prodromal stage to dementia, and 17 cognitively intact, elderly controls completed 18F-ASEM PET. For each participant, binding in each region of interest was estimated using Logan graphical analysis with a metabolite-corrected arterial input function. Results: Higher 18F-ASEM binding was observed in MCI patients than in controls across all regions, supporting higher availability of α7-nAChR in MCI. 18F-ASEM binding was not associated with verbal memory in this small MCI sample. Conclusion: These data support use of 18F-ASEM PET to examine further the relationship between α7-nAChR availability and MCI.


Asunto(s)
Compuestos de Azabiciclo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Óxidos S-Cíclicos , Tomografía de Emisión de Positrones , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Proyectos Piloto
19.
J Control Release ; 317: 312-321, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31751635

RESUMEN

Intra-arterial (IA) infusion of mannitol induces osmotic blood-brain barrier opening (OBBBO) and that method has been used for decades to improve drug delivery to the brain. However, high variability of outcomes prevented vast clinical adoption. Studies on dynamic multi-scale imaging of OBBBO as well as extravasation of IA injected therapeutic agents are essential to develop strategies assuring precision and reproducibility of drug delivery. Intravital microscopy is increasingly used to capture the dynamics of biological processes at the molecular level in convenient mouse models. However, until now OBBBO has been achieved safely in subcortical structures, which prevented direct insight into the process of extravasation through the skull window. Here, we used our previously developed real-time MRI to adjust the procedure to achieve robust cortical OBBBO. We found that catheter-mediated delivery to the cortex from the ipsilateral carotid artery can be improved by temporarily occluding the contralateral carotid artery. The reproducibility and safety of the method were validated by MRI and histology. This experimental platform was further exploited for studying with intravital microscopy the extravasation of 0.58 kDa rhodamine and 153 kDa anti-VEGF monoclonal antibody (bevacizumab) upon IA injection. Dynamic imaging during IA infusion captured the spatiotemporal dynamic of infiltration for each molecule into the brain parenchyma upon OBBBO. Small-sized rhodamine exhibited faster and higher penetration than the antibody. Histological analysis showed some uptake of the monoclonal antibody after IA delivery, and OBBBO significantly amplified the extent of its uptake. For quantitative assessment of cortical uptake, bevacizumab was radiolabeled with zirconium-89 and infused intraarterially. As expected, OBBBO potentiated brain accumulation, providing 33.90 ± 9.06% of injected dose per gram of brain tissue (%ID/g) in the cortex and 17.09 ± 7.22%ID/g in subcortical structures. In contrast IA infusion with an intact BBB resulted in 3.56 ± 1.06%ID/g and 3.57 ± 0.59%ID/g in the same brain regions, respectively. This study established reproducible cortical OBBBO in mice, which enabled multi-photon microscopy studies on OBBBO and drug targeting. This approach helped demonstrate in a dynamic fashion extravasation of fluorescently-tagged antibodies and their effective delivery into the brain across an osmotically opened BBB.


Asunto(s)
Barrera Hematoencefálica , Preparaciones Farmacéuticas , Animales , Encéfalo , Sistemas de Liberación de Medicamentos , Microscopía Intravital , Ratones , Reproducibilidad de los Resultados
20.
Oncotarget ; 10(56): 5731-5744, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31645896

RESUMEN

Neuroendocrine tumors (NETs) are an extremely heterogenous group of malignancies with variable clinical behavior. Molecular imaging of patients with NETs allows for effective patient stratification and treatment guidance and is crucial in selection of targeted therapies. Positron emission tomography (PET) with the radiotracer L-[18F]FDOPA is progressively being utilized for non-invasive in vivo visualization of NETs and pancreatic ß-cell hyperplasia. While L-[18F]FDOPA-PET is a valuable tool for disease detection and management, it also exhibits significant diagnostic limitations owing to its inherent physiological uptake in off-target tissues. We hypothesized that the D-amino acid structural isomer of that clinical tracer, D-[18F]FDOPA, may exhibit superior clearance capabilities owing to a reduced in vivo enzymatic recognition and enzyme-mediated metabolism. Here, we report a side-by-side evaluation of D-[18F]FDOPA with its counterpart clinical tracer, L-[18F]FDOPA, for the non-invasive in vivo detection of NETs. In vitro evaluation in five NET cell lines, including invasive small intestinal neuroendocrine carcinomas (STC-1), insulinomas (TGP52 and TGP61), colorectal adenocarcinomas (COLO-320) and pheochromocytomas (PC12), generally indicated higher overall uptake levels of L-[18F]FDOPA, compared to D-[18F]FDOPA. While in vivo PET imaging and ex vivo biodistribution studies in PC12, STC-1 and COLO-320 mouse xenografts further supported our in vitro data, they also illustrated lower off-target retention and enhanced clearance of D-[18F]FDOPA from healthy tissues. Cumulatively our results indicate the potential diagnostic applications of D-[18F]FDOPA for malignancies where the utility of L-[18F]FDOPA-PET is limited by the physiological uptake of L-[18F]FDOPA, and suggest D-[18F]FDOPA as a viable PET imaging tracer for NETs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...