Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 11(9)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443554

RESUMEN

Over the two last decades, venom toxins have been explored as alternatives to opioids to treat chronic debilitating pain. At present, approximately 20 potential analgesic toxins, mainly from spider venoms, are known to inhibit with high affinity the NaV1.7 subtype of voltage-gated sodium (NaV) channels, the most promising genetically validated antinociceptive target identified so far. The present study aimed to consolidate the development of phlotoxin 1 (PhlTx1), a 34-amino acid and 3-disulfide bridge peptide of a Phlogiellus genus spider, as an antinociceptive agent by improving its affinity and selectivity for the human (h) NaV1.7 subtype. The synthetic homologue of PhlTx1 was generated and equilibrated between two conformers on reverse-phase liquid chromatography and exhibited potent analgesic effects in a mouse model of NaV1.7-mediated pain. The effects of PhlTx1 and 8 successfully synthetized alanine-substituted variants were studied (by automated whole-cell patch-clamp electrophysiology) on cell lines stably overexpressing hNaV subtypes, as well as two cardiac targets, the hCaV1.2 and hKV11.1 subtypes of voltage-gated calcium (CaV) and potassium (KV) channels, respectively. PhlTx1 and D7A-PhlTx1 were shown to inhibit hNaV1.1-1.3 and 1.5-1.7 subtypes at hundred nanomolar concentrations, while their affinities for hNaV1.4 and 1.8, hCaV1.2 and hKV11.1 subtypes were over micromolar concentrations. Despite similar analgesic effects in the mouse model of NaV1.7-mediated pain and selectivity profiles, the affinity of D7A-PhlTx1 for the NaV1.7 subtype was at least five times higher than that of the wild-type peptide. Computational modelling was performed to deduce the 3D-structure of PhlTx1 and to suggest the amino acids involved in the efficiency of the molecule. In conclusion, the present structure-activity relationship study of PhlTx1 results in a low improved affinity of the molecule for the NaV1.7 subtype, but without any marked change in the molecule selectivity against the other studied ion channel subtypes. Further experiments are therefore necessary before considering the development of PhlTx1 or synthetic variants as antinociceptive drug candidates.


Asunto(s)
Analgésicos/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencia de Aminoácidos , Analgésicos/química , Analgésicos/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/genética , Pliegue de Proteína , Arañas , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación
3.
Toxins (Basel) ; 9(7)2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718822

RESUMEN

Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT2 receptors (angiotensin II type 2 receptors; AT2R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT2R, with this action being not affected by known ligands of AT2R. This result points towards novel AT2R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.


Asunto(s)
Analgésicos/farmacología , Toxinas Bacterianas/farmacología , Macrólidos/farmacología , Neuronas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ganglios Espinales/citología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Receptor de Angiotensina Tipo 2/metabolismo
4.
Acta Neuropathol Commun ; 2: 86, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25091984

RESUMEN

BACKGROUND: In Huntington's disease (HD), the ratio between normal and mutant Huntingtin (polyQ-hHtt) is crucial in the onset and progression of the disease. As a result, addition of normal Htt was shown to improve polyQ-hHtt-induced defects. Therefore, we recently identified, within human Htt, a 23aa peptide (P42) that prevents aggregation and polyQ-hHtt-induced phenotypes in HD Drosophila model. In this report, we evaluated the therapeutic potential of P42 in a mammalian model of the disease, R6/2 mice. RESULTS: To this end, we developed an original strategy for P42 delivery, combining the properties of the cell penetrating peptide TAT from HIV with a nanostructure-based drug delivery system (Aonys® technology), to form a water-in-oil microemulsion (referred to as NP42T) allowing non-invasive per mucosal buccal/rectal administration of P42. Using MALDI Imaging Mass Spectrometry, we verified the correct targeting of NP42T into the brain, after per mucosal administration. We then evaluated the effects of NP42T in R6/2 mice. We found that P42 (and/or derivatives) are delivered into the brain and target most of the cells, including the neurons of the striatum. Buccal/rectal daily administrations of NP42T microemulsion allowed a clear improvement of behavioural HD-associated defects (foot-clasping, rotarod and body weights), and of several histological markers (aggregation, astrogliosis or ventricular areas) recorded on brain sections. CONCLUSIONS: These data demonstrate that NP42T presents an unprecedented protective effect, and highlight a new therapeutic strategy for HD, associating an efficient peptide with a powerful delivery technology.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/administración & dosificación , Proteínas del Tejido Nervioso/uso terapéutico , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/farmacocinética , Fragmentos de Péptidos/uso terapéutico , Administración Bucal , Administración Rectal , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Proteína Huntingtina , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/síntesis química , Proteínas del Tejido Nervioso/farmacocinética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...