Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1213344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638016

RESUMEN

Memory B cells are comprised of unswitched (CD27+IgD+) and switched (CD27+IgD-) subsets. The origin and function of unswitched human memory B cells are debated in the literature, whereas switched memory B cells are primed to respond to recurrent infection. Unswitched memory B cells have been described to be reduced in frequency with severe SARS-CoV2 infection and here we characterize their activation status, BCR functionality, and contribution to virally-induced cytokine production. Analyses of whole blood from healthy individuals, people immunized against SARS-CoV2, and those who have had mild and severe SARS-CoV2 infection, confirm a reduction in the frequency of unswitched memory B cells during severe SARS-CoV2 infection and demonstrate this reduction is associated with increased levels of systemic TNFα. We further document how severe viral infection is associated with an increased frequency of 'IgD+' only memory B cells that correlate with increased IgG autoantibody levels. Unswitched and switched memory B cells from severe SARS-CoV2 infection displayed evidence of heightened activation with a concomitant reduction in the expression of the inhibitory receptor CD72. Functionally, both populations of memory B cells from severe SARS-COV2 infection harbored a signaling-competent BCR that displayed enhanced BCR signaling activity in the unswitched population. Finally, we demonstrate that B cells from mild SARS-CoV2 infection are poised to secrete pro-inflammatory cytokines IL-6 and TNFα. Importantly, unswitched memory B cells were a major producer of IL-6 and switched memory B cells were a major producer of TNFα in response to viral TLR ligands. Together these data indicate that B cells contribute to the inflammatory milieu during viral infection.


Asunto(s)
COVID-19 , Células B de Memoria , Humanos , Factor de Necrosis Tumoral alfa , Interleucina-6 , ARN Viral , SARS-CoV-2 , Citocinas
2.
Front Immunol ; 14: 1113932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817450

RESUMEN

Introduction: The emergence of SARS-CoV-2, which causes COVID-19, has led to over 400 million reported cases worldwide. COVID-19 disease ranges from asymptomatic infection to severe disease and may be impacted by individual immune differences. Methods: We used multiparameter flow cytometry to compare CD4+ and CD8+ T cell responses in severe (ICU admitted) and non-severe (admitted to observational unit) hospitalized COVID-19 patients. Results: We found that patients with severe COVID- 19 had greater frequencies of CD4+ T cells expressing CD62L compared to non-severe patients and greater frequencies of perforin+ CD8+ T cells compared to recovered patients. Furthermore, greater frequencies of CD62L+ CD4+ and CD8+ T cells were seen in severely ill diabetic patients compared to non-severe and non-diabetic patients, and increased CD62L+ CD4+ T cells were also seen in severely ill patients with hypertension. Discussion: This is the first report to show that CD62L+ T cells and perforin+ T cells are associated with severe COVID-19 illness and are significantly increased in patients with high-risk pre-existing conditions including older age and diabetes. These data provide a potential biological marker for severe COVID-19.


Asunto(s)
COVID-19 , Humanos , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Perforina , SARS-CoV-2 , Gravedad del Paciente , Selectina L/inmunología
3.
Front Immunol ; 13: 988125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131937

RESUMEN

Double negative (DN) B cells (CD27-IgD-) comprise a heterogenous population of DN1, DN2, and the recently described DN3 and DN4 subsets. In autoimmune disease, DN2 cells are reported to be precursors to autoreactive antibody secreting cells and expansion of DN2 cells is linked to elevated interferon levels. Severe SARS-CoV-2 infection is characterized by elevated systemic levels of pro-inflammatory cytokines and serum autoantibodies and expansion of the DN2 subset in severe SARS-CoV-2 infection has been reported. However, the activation status, functional capacity and contribution to virally-induced autoantibody production by DN subsets is not established. Here, we validate the finding that severe SARS-CoV-2 infection is associated with a reduction in the frequency of DN1 cells coinciding with an increase in the frequency of DN2 and DN3 cells. We further demonstrate that with severe viral infection DN subsets are at a heightened level of activation, display changes in immunoglobulin class isotype frequency and have functional BCR signaling. Increases in overall systemic inflammation (CRP), as well as specific pro-inflammatory cytokines (TNFα, IL-6, IFNγ, IL-1ß), significantly correlate with the skewing of DN1, DN2 and DN3 subsets during severe SARS-CoV-2 infection. Importantly, the reduction in DN1 cell frequency and expansion of the DN3 population during severe infection significantly correlates with increased levels of serum autoantibodies. Thus, systemic inflammation during SARS-CoV-2 infection drives changes in Double Negative subset frequency, likely impacting their contribution to generation of autoreactive antibodies.


Asunto(s)
COVID-19 , Factor de Necrosis Tumoral alfa , Autoanticuerpos , Linfocitos B , Humanos , Inmunoglobulina D , Isotipos de Inmunoglobulinas , Inflamación , Interferones , Interleucina-6 , SARS-CoV-2
4.
Vaccines (Basel) ; 10(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891324

RESUMEN

Essential agricultural workers work under occupational conditions that may increase the risk of SARS-CoV-2 exposure and transmission. Data from an agricultural worker cohort in Guatemala, and anti-SARS-CoV-2 nucleocapsid IgG (anti-N IgG) testing were used to estimate past infections and analyze risk factors associated with seropositivity at enrollment and association with SARS-CoV-2 infection. The stability of neutralizing antibody (NAb) responses were assessed in a subset of participants. The adjusted relative risk (aRR) for seroprevalence at enrollment was estimated accounting for correlations within worksites. At enrollment, 616 (46.2%) of 1334 (93.2%) participants had anti-N IgG results indicating prior SARS-CoV-2 infection. A cough ≤ 10 days prior to enrollment (aRR = 1.28, 95% CI: 1.13−1.46) and working as a packer (aRR = 2.00, 95% CI: 1.67−2.38) or packing manager within the plants (aRR = 1.82, 95% CI: 1.36−2.43) were associated with increased risk of seropositivity. COVID-19 incidence density among seronegative workers was 2.3/100 Person-Years (P-Y), higher than seropositive workers (0.4/100 P-Y). Most workers with follow-up NAb testing (65/77, 84%) exhibited a 95% average decrease in NAb titers in <6 months. While participants seropositive at baseline were less likely to experience a symptomatic SARS-CoV-2 infection during follow-up, NAb titers rapidly waned, underscoring the need for multipronged COVID-19 prevention strategies in the workplace, including vaccination.

5.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420627

RESUMEN

Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset. We asked whether SARS-CoV-2-associated inflammation impairs BND cell peripheral tolerance. To address this, PBMCs and plasma were collected from healthy controls, individuals immunized against SARS-CoV-2, or subjects with convalescent or severe SARS-CoV-2 infection. We demonstrate that BND cells from severely infected individuals are significantly activated, display reduced inhibitory receptor expression, and restored BCR signaling, indicative of a breach in anergy during viral infection, supported by increased levels of autoreactive antibodies. The phenotypic and functional BND cell alterations significantly correlate with increased inflammation in severe SARS-CoV-2 infection. Thus, autoreactive BND cells are released from peripheral tolerance with SARS-CoV-2 infection, likely as a consequence of robust systemic inflammation.


Asunto(s)
COVID-19 , Tolerancia Periférica , Anticuerpos Antivirales , Linfocitos B , Humanos , Inflamación/metabolismo , SARS-CoV-2
6.
J Immunol ; 205(11): 3107-3121, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127823

RESUMEN

Recent outbreaks of Zika virus (ZIKV) have been associated with birth defects, including microcephaly and neurologic impairment. However, the mechanisms that confer potential susceptibility to ZIKV during pregnancy remain unclear. We hypothesized that poor outcomes from ZIKV infection during pregnancy are due in part to pregnancy-induced alteration of innate immune cell frequencies and cytokine expression. To examine the impact of pregnancy on innate immune responses, we inoculated immunocompetent pregnant and nonpregnant female C57BL/6 mice with 5 × 105 focus-forming units of ZIKV intravaginally. Innate immune cell frequencies and cytokine expression were measured by flow cytometry at day 3 postinfection. Compared with nonpregnant mice, pregnant mice exhibited higher frequencies of uterine macrophages (CD68+) and CD11c+ CD103+ and CD11c+ CD11b+ dendritic cells. Additionally, ZIKV-infected pregnant mice had lower frequencies of CD45+ IL-12+ and CD11b+ IL-12+ cells in the uterus and spleen. Next, we measured the frequencies of Ag-experienced CD4 (CD4+ CD11a+ CD49d+) and CD8 (CD8lo CD11ahi) T cells at day 10 postinfection to determine the impact of pregnancy-associated changes in innate cellular IL-12 responses on the adaptive immune response. We found that pregnant mice had lower frequencies of uterine Ag-experienced CD4 T cells and ZIKV-infected pregnant mice had lower frequencies of uterine Ag-experienced CD8 T cells compared with ZIKV-infected nonpregnant mice. These data show that pregnancy results in altered innate and adaptive immune responses to ZIKV infection in the reproductive tract of mice and that pregnancy-associated immune modulation may play an important role in the severity of acute ZIKV infection.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Infecciones del Sistema Genital/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Citocinas/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Infecciones del Sistema Genital/virología , Infección por el Virus Zika/virología
7.
Viral Immunol ; 32(1): 38-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30222521

RESUMEN

West Nile virus (WNV) is a single-stranded RNA flavivirus and is a major cause of viral encephalitis worldwide. Experimental models of WNV infection in mice are commonly used to define acute neuroinflammatory responses in the brain. Alpha-synuclein (Asyn) is a protein of primarily neuronal origin and is a major cause of Parkinson's disease (PD), a disorder characterized by loss of dopaminergic neurons. Both WNV and PD pathologies are largely mediated by inflammation of the central nervous system (neuroinflammation) and have overlapping inflammatory pathways. In this review, we highlight the roles of the immune system in both diseases while comparing and contrasting both protective and pathogenic roles of immune cells and their effector proteins. Additionally, we review the current literature showing that Asyn is an important mediator of the immune response with diverging roles in PD (pathogenic) and WNV disease (neuroprotective).


Asunto(s)
Sistema Nervioso Central/patología , Enfermedad de Parkinson/patología , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/inmunología , alfa-Sinucleína/genética , Inmunidad Adaptativa , Animales , Encéfalo/inmunología , Encéfalo/virología , Sistema Nervioso Central/inmunología , Humanos , Inmunidad Innata , Inflamación , Ratones , Neuronas/inmunología , Neuronas/patología , Neuronas/virología , Enfermedad de Parkinson/inmunología , Virus del Nilo Occidental/genética , alfa-Sinucleína/inmunología
8.
Environ Toxicol Chem ; 35(4): 953-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26561986

RESUMEN

Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.


Asunto(s)
Cyprinidae/fisiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Preparaciones Farmacéuticas/análisis , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Larva/efectos de los fármacos , Larva/fisiología , Hígado/efectos de los fármacos , Hígado/ultraestructura , Masculino , Vitelogeninas/sangre , Contaminantes Químicos del Agua/análisis
9.
PLoS One ; 8(12): e84851, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386424

RESUMEN

Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.


Asunto(s)
Peces/metabolismo , Locomoción/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Animales , Transporte de Electrón/fisiología , Agua Dulce , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...