Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589367

RESUMEN

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Asunto(s)
Síndromes Mielodisplásicos , Estructuras R-Loop , Humanos , Factor de Empalme U2AF/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme de ARN/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Factores de Transcripción/genética , Fosfoproteínas/genética
2.
BMC Cancer ; 24(1): 417, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575987

RESUMEN

Lung cancer is one of the most common type of cancer and, despite significant advances in screening and diagnosis approaches, a large proportion of patients at diagnosis still present advanced stages of the disease with distant metastasis and bad prognosis. Finding and validating biomarkers of lung cancer is therefore essential. Such studies are often conducted on European, American and Asian populations and the relevance of these biomarkers in other populations remains less clear. In that prospect, we investigated the expression level of seven microRNAs, chosen from the medical literature (miR-16-5p, miR-92a-3p, miR-103a-3p, miR-375-3p, miR-451a, miR-520-3p and miR-let-7e-5p), in the blood of Tunisian lung cancer patients, treated or not by chemotherapy, and healthy control individuals. We found that high expression levels of circulating miR-16-5p, miR-92a-3p and miR-451a in the plasma of untreated patients discriminate them from healthy control individuals. In addition, miR-16-5p and miR-451a expression levels are significantly reduced in the plasma of chemotherapy-treated patients compared to untreated patients. Our results confirmed previous work in other populations worldwide and provide further evidence that circulating miR-16-5p, miR-92a-3p and miR-451a potentially regulate key pathways involved in the initiation and progression of cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Biomarcadores , Biomarcadores de Tumor/genética
3.
EMBO Rep ; 24(12): e57585, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37965896

RESUMEN

Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.


Asunto(s)
Replicación del ADN , Proteínas de Unión al GTP , Humanos , Proteínas de Unión al GTP/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Daño del ADN , ADN
4.
Nucleic Acids Res ; 50(10): 5545-5564, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35609998

RESUMEN

The aryl hydrocarbon receptor (AHR) regulates the expression of numerous genes in response to activation by agonists including xenobiotics. Although it is well appreciated that environmental signals and cell intrinsic features may modulate this transcriptional response, how it is mechanistically achieved remains poorly understood. We show that hexokinase 2 (HK2) a metabolic enzyme fuelling cancer cell growth, is a transcriptional target of AHR as well as a modulator of its activity. Expression of HK2 is positively regulated by AHR upon exposure to agonists both in human cells and in mice lung tissues. Conversely, over-expression of HK2 regulates the abundance of many proteins involved in the regulation of AHR signalling and these changes are linked with altered AHR expression levels and transcriptional activity. HK2 expression also shows a negative correlation with AHR promoter methylation in tumours, and these tumours with high HK2 expression and low AHR methylation are associated with a worse overall survival in patients. In sum, our study provides novel insights into how AHR signalling is regulated which may help our understanding of the context-specific effects of this pathway and may have implications in cancer.


Asunto(s)
Hexoquinasa , Receptores de Hidrocarburo de Aril , Animales , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hexoquinasa/farmacología , Humanos , Ratones , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Xenobióticos
5.
Environ Res ; 195: 110317, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33069705

RESUMEN

The role of environmental condition on the infection by the novel pathogenic SARS-CoV-2 virus remains uncertain. In here, exploiting a large panel of publicly available genome-wide data, we investigated whether the human receptor ACE2 and human proteases TMPRSS2, FURIN and CATHEPSINs (B, L and V), which are involved in SARS-CoV-2 cell entry, are transcriptionally regulated by environmental cues. We report that more than 50 chemicals modulate the expression of ACE2 or human proteases important for SARS-CoV-2 cell entry. We further demonstrate that transcription factor AhR, which is commonly activated by pollutants, binds to the promoter of TMPRSS2 and enhancers and/or promoters of Cathepsin B, L and V encoding genes. Our exploratory study documents an influence of environmental exposures on the expression of genes involved in SARS-CoV-2 cell entry. These results could be conceptually and medically relevant to our understanding of the COVID-19 disease, and should be further explored in laboratory and epidemiologic studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Exposición a Riesgos Ambientales , Humanos , Péptido Hidrolasas , Internalización del Virus
6.
Cancers (Basel) ; 12(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365491

RESUMEN

Prostate cancer is one of the most commonly diagnosed cancers in men. A number of genomic and clinical studies have led to a better understanding of prostate cancer biology. Still, the care of patients as well as the prediction of disease aggressiveness, recurrence and outcome remain challenging. Here, we showed that expression of the gene ZBTB38 is associated with poor prognosis in localised prostate cancer and could help discriminate aggressive localised prostate tumours from those who can benefit only from observation. Analysis of different prostate cancer cohorts indicates that low expression levels of ZBTB38 associate with increased levels of chromosomal abnormalities and more aggressive pathological features, including higher rate of biochemical recurrence of the disease. Importantly, gene expression profiling of these tumours, complemented with cellular assays on prostate cancer cell lines, unveiled that tumours with low levels of ZBTB38 expression might be targeted by doxorubicin, a compound generating reactive oxygen species. Our study shows that ZBTB38 is involved in prostate cancer pathogenesis and may represent a useful marker to identify high risk and highly rearranged localised prostate cancer susceptible to doxorubicin.

7.
Cell Mol Life Sci ; 71(23): 4489-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25248392

RESUMEN

Common fragile sites (CFSs) are large chromosomal regions long identified by conventional cytogenetics as sequences prone to breakage in cells subjected to replication stress. The interest in CFSs came from their key role in the formation of DNA damage, resulting in chromosomal rearrangements. The instability of CFSs was notably correlated with the appearance of genome instability in precancerous lesions and during tumor progression. Identification of the molecular mechanisms responsible for their instability therefore represents a major challenge. A number of data show that breaks result from mitotic entry before replication completion but the mechanisms responsible for such delayed replication of CFSs and relaxed checkpoint surveillance are still debated. In addition, clues to the molecular events leading to breakage just start to emerge. We present here the results of recent reports addressing these questions.


Asunto(s)
Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Neoplasias/genética , Animales , Ciclo Celular , Daño del ADN , Replicación del ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología
8.
PLoS One ; 9(1): e81843, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416132

RESUMEN

Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.


Asunto(s)
Metilación de ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias/genética , Estudios de Asociación Genética , Genoma Humano/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cromosomas Humanos Par 6/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estimación de Kaplan-Meier , Metaanálisis como Asunto , Análisis Multivariante , Mutación/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Reproducibilidad de los Resultados
9.
PLoS Genet ; 9(7): e1003643, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874235

RESUMEN

Breaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks. Partial activation of the pathway under moderate stress thus takes steps against fork disassembly but tolerates S-phase progression and mitotic onset. We show that fork protection by ATR is crucial to CFS integrity, specifically in the cell type where a given site displays paucity in backup replication origins. Tolerance to mitotic entry with under-replicated CFSs therefore results in chromosome breaks, providing a pool of cells committed to further instability.


Asunto(s)
Cromatina/genética , Sitios Frágiles del Cromosoma/genética , Inestabilidad Genómica/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Mitosis/genética , Proteínas Quinasas/genética , Origen de Réplica/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
10.
Trends Genet ; 28(1): 22-32, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22094264

RESUMEN

Common fragile sites (CFSs) are large chromosomal regions prone to breakage upon replication stress that are considered a driving force of oncogenesis. CFSs were long believed to contain sequences blocking fork progression, thus impeding replication completion and leading to DNA breaks upon chromosome condensation. However, recent studies show that delayed completion of DNA replication instead depends on a regional paucity in initiation events. Because the distribution and the timing of these events are cell type dependent, different chromosomal regions can be committed to fragility in different cell types. These new data reveal the epigenetic nature of CFSs and open the way to a reevaluation of the role played by these sites in the formation of chromosome rearrangements found in tumors from different tissues.


Asunto(s)
Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Animales , ADN/genética , ADN/metabolismo , Replicación del ADN , Epigénesis Genética , Humanos , Transcripción Genética
12.
Nature ; 470(7332): 120-3, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21258320

RESUMEN

Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Sitios Frágiles del Cromosoma/genética , Fragilidad Cromosómica/fisiología , Replicación del ADN/fisiología , Proteínas de Neoplasias/genética , Origen de Réplica/genética , Línea Celular , Rotura Cromosómica , Fragilidad Cromosómica/genética , Replicación del ADN/genética , Fibroblastos , Genes Supresores de Tumor , Sitios Genéticos/genética , Humanos , Linfocitos/metabolismo , Modelos Biológicos , Especificidad de Órganos
13.
EMBO Rep ; 11(9): 698-704, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20671737

RESUMEN

In eukaryotes, only a fraction of replication origins fire at each S phase. Local histone acetylation was proposed to control firing efficiency of origins, but conflicting results were obtained. We report that local histone acetylation does not reflect origin efficiencies along the adenosine monophosphate deaminase 2 locus in mammalian fibroblasts. Reciprocally, modulation of origin efficiency does not affect acetylation. However, treatment with a deacetylase inhibitor changes the initiation pattern. We demonstrate that this treatment alters pyrimidine biosynthesis and decreases fork speed, which recruits latent origins. Our findings reconcile results that seemed inconsistent and reveal an unsuspected effect of deacetylase inhibitors on replication dynamics.


Asunto(s)
Replicación del ADN , Histonas/metabolismo , Nucleótidos/metabolismo , Origen de Réplica , Acetilación , Animales , Células Cultivadas , Fibroblastos/citología , Fibroblastos/fisiología , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/metabolismo , Transcripción Genética
14.
PLoS Genet ; 6(4): e1000920, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421929

RESUMEN

The mechanisms governing telomere replication in humans are still poorly understood. To fill this gap, we investigated the timing of replication of single telomeres in human cells. Using in situ hybridization techniques, we have found that specific telomeres have preferential time windows for replication during the S-phase and that these intervals do not depend upon telomere length and are largely conserved between homologous chromosomes and between individuals, even in the presence of large subtelomeric segmental polymorphisms. Importantly, we show that one copy of the 3.3 kb macrosatellite repeat D4Z4, present in the subtelomeric region of the late replicating 4q35 telomere, is sufficient to confer both a more peripheral localization and a later-replicating property to a de novo formed telomere. Also, the presence of beta-satellite repeats next to a newly created telomere is sufficient to delay its replication timing. Remarkably, several native, non-D4Z4-associated, late-replicating telomeres show a preferential localization toward the nuclear periphery, while several early-replicating telomeres are associated with the inner nuclear volume. We propose that, in humans, chromosome arm-specific subtelomeric sequences may influence both the spatial distribution of telomeres in the nucleus and their replication timing.


Asunto(s)
Núcleo Celular/metabolismo , Replicación del ADN , Telómero/química , Línea Celular , Cromosomas/metabolismo , Humanos , Fase S , Telomerasa/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
15.
BMC Cancer ; 6: 245, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-17040570

RESUMEN

BACKGROUND: Oncogene amplification and overexpression occur in tumor cells. Amplification status may provide diagnostic and prognostic information and may lead to new treatment strategies. Chromosomal regions 8p12, 8q24, 11q13, 17q12 and 20q13 are recurrently amplified in breast cancers. METHODS: To assess the frequencies and clinical impact of amplifications, we analyzed 547 invasive breast tumors organized in a tissue microarray (TMA) by fluorescence in situ hybridization (FISH) and calculated correlations with histoclinical features and prognosis. BAC probes were designed for: (i) two 8p12 subregions centered on RAB11FIP1 and FGFR1 loci, respectively; (ii) 11q13 region centered on CCND1; (iii) 12p13 region spanning NOL1; and (iv) three 20q13 subregions centered on MYBL2, ZNF217 and AURKA, respectively. Regions 8q24 and 17q12 were analyzed with MYC and ERBB2 commercial probes, respectively. RESULTS: We observed amplification of 8p12 (amplified at RAB11FIP1 and/or FGFR1) in 22.8%, 8q24 in 6.1%, 11q13 in 19.6%, 12p13 in 4.1%, 17q12 in 9.9%, 20q13Z (amplified at ZNF217 only) in 9.9%, and 20q13Co (co-amplification of two or three 20q13 loci) in 8.5% of cases. The 8q24, 12p13, and 17q12 amplifications were correlated with high grade. The most frequent single amplifications were 8p12 (9.8%), 8q24 (3.3%) and 12p13 (3.3%), 20q13Z and 20q13Co (1.6%) regions. The 17q12 and 11q13 regions were never found amplified alone. The most frequent co-amplification was 8p12/11q13. Amplifications of 8p12 and 17q12 were associated with poor outcome. Amplification of 12p13 was associated with basal molecular subtype. CONCLUSION: Our results establish the frequencies, prognostic impacts and subtype associations of various amplifications and co-amplifications in breast cancers.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma/genética , Cromosomas Humanos Par 11 , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 20 , Cromosomas Humanos Par 8 , Amplificación de Genes , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Femenino , Frecuencia de los Genes , Humanos , Persona de Mediana Edad , Modelos Biológicos , Metástasis de la Neoplasia/diagnóstico , Pronóstico , Estadística como Asunto
16.
Mol Cancer Res ; 3(12): 655-67, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16380503

RESUMEN

In human carcinomas, especially breast cancer, chromosome arm 8p is frequently involved in complex chromosomal rearrangements that combine amplification at 8p11-12, break in the 8p12-21 region, and loss of 8p21-ter. Several studies have identified putative oncogenes in the 8p11-12 amplicon. However, discrepancies and the lack of knowledge on the structure of this amplification lead us to think that the actual identity of the oncogenes is not definitively established. We present here a comprehensive study combining genomic, expression, and chromosome break analyses of the 8p11-12 region in breast cell lines and primary breast tumors. We show the existence of four amplicons at 8p11-12 using array comparative genomic hybridization. Gene expression analysis of 123 samples using DNA microarrays identified 14 genes significantly overexpressed in relation to amplification. Using fluorescence in situ hybridization analysis on tissue microarrays, we show the existence of a cluster of breakpoints spanning a region just telomeric to and associated with the amplification. Finally, we show that 8p11-12 amplification has a pejorative effect on survival in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 8/genética , Amplificación de Genes , Oncogenes/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cromosomas Humanos Par 8/metabolismo , Daño del ADN , Humanos , Hibridación Fluorescente in Situ , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Telómero/genética , Análisis de Matrices Tisulares
17.
Genes Chromosomes Cancer ; 44(1): 103-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15887243

RESUMEN

The ETV6/TEL gene encodes a transcription factor frequently rearranged in several types of cancer. We looked for ETV6 rearrangements in invasive breast cancer using fluorescence in situ hybridization (FISH) of BAC probes on sections of tissue microarrays containing 632 tumor samples. Of these samples, signal of sufficient quality for screening by FISH was obtained for 356. Five cases (one lobular, one nontypical secretory, one mixed, and two ductal carcinomas) showed ETV6 rearrangement.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Adenocarcinoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Fusión Artificial Génica , Neoplasias de la Mama/patología , Centrómero/genética , Mapeo Cromosómico , Femenino , Reordenamiento Génico , Humanos , Hibridación Fluorescente in Situ , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-ets , Telómero/genética , Proteína ETS de Variante de Translocación 6
18.
Br J Haematol ; 125(5): 601-4, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15147375

RESUMEN

We report a novel fusion of the MYST4 and CBP genes in an acute myeloid leukaemia (AML)-M4 patient exhibiting t(10;16)(q22;p13) and t(11;17)(q23;q21). The t(10;16)(q22;p13) resulted in a rearrangement, where MYST4-CBP and CBP-MYST4 chimaeric transcripts were products of in-frame fusions of MYST4 exon 17 to CBP exon 6 and CBP exon 4 to MYST4 exon 18 respectively. The potential resulting chimaeric proteins showed similarities with MYST3-CBP, MYST3-P300 and MYST3-NCOA2 putative fusion proteins found in other cases of AML.


Asunto(s)
Cromosomas Humanos Par 10/genética , Cromosomas Humanos Par 16/genética , Leucemia Mieloide/genética , Translocación Genética/genética , Enfermedad Aguda , Fusión Artificial Génica , Quimera/genética , Femenino , Reordenamiento Génico/genética , Humanos
19.
Genes Chromosomes Cancer ; 37(4): 333-45, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12800145

RESUMEN

The 8p11-21 region is a frequent target of alterations in breast cancer and other carcinomas. We surveyed 34 breast tumor cell lines and 9 pancreatic cancer cell lines for alterations of this region by use of multicolor fluorescence in situ hybridization (M-FISH) and BAC-specific FISH. We describe a recurrent chromosome translocation breakpoint that targets the NRG1 gene on 8p12. NRG1 encodes growth factors of the neuregulin/heregulin-1 family that are ligands for tyrosine kinase receptors of the ERBB family. Breakpoints within the NRG1 gene were found in four of the breast tumor cell lines: ZR-75-1, in a dic(8;11); HCC1937, in a t(8;10)(p12;p12.1); SUM-52, in an hsr(8)(p12); UACC-812, in a t(3;8); and in two of the pancreatic cancer cell lines: PaTu I, in a der(8)t(4;8); and SUIT-2, in a del(8)(p). Mapping by two-color FISH showed that the breaks were scattered over 1.1 Mb within the NRG1 gene. It is already known that the MDA-MB-175 breast tumor cell line has a dic(8;11), with a breakpoint in NRG1 that fuses NRG1 to the DOC4 gene on 11q13. Thus, we have found a total of seven breakpoints, in two types of cancer cell lines, that target the NRG1 gene. This suggests that the NRG1 locus is a recurring target of translocations in carcinomas. PCR analysis of reverse-transcribed cell line RNAs revealed an extensive complexity of the NRG1 transcripts but failed to detect a consistent pattern of mRNA isoforms in the cell lines with NRG1 breakpoint.


Asunto(s)
Neoplasias de la Mama/genética , Rotura Cromosómica/genética , Neurregulina-1/genética , Neoplasias Pancreáticas/genética , Translocación Genética/genética , Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Mapeo Cromosómico , Codón Iniciador/genética , Exones/genética , Humanos , Neurregulina-1/biosíntesis , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patología , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...