Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cogn Behav Ther ; 53(3): 302-323, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372166

RESUMEN

This study addresses the gap in understanding the varied effectiveness of group cognitive behavioral therapy (gCBT) delivered by different professionals. This study aims to address this gap by conducting a systematic review of randomized controlled trials (RCTs) that evaluate gCBT and compare it to inactive controls in adults with a clinical diagnosis of depression. A total of 33 RCTs were included for analysis. In the overall analysis, 'profession of gCBT deliverer' was not a significant moderator in the meta-regression model (p = 0.57). For people without comorbidity, the overall effect size estimate was -0.69 (95% CI, -1.01. to -0.37, p = 0.03). Among gCBT deliverers, psychologists and nurses/psychiatric nurses demonstrated significant effectiveness, with psychologists showing a large effect size of -0.78 (95% CI, -1.25 to -0.30, p < 0.01) and nurses/psychiatric nurses showing a medium effect size of -0.45 (95% CI, -0.85 to -0.05, p = 0.03). The certainty of evidence for both professionals was moderate. These results have significant implications for the delivery of mental healthcare, as nurses/psychiatric nurses may be more accessible and cost-effective than psychologists in some settings. However, further research is necessary to determine the effectiveness of gCBT delivered by a broader range of healthcare professionals for patients with depression and other comorbidities.


Asunto(s)
Terapia Cognitivo-Conductual , Depresión , Adulto , Humanos , Depresión/terapia , Terapia Cognitivo-Conductual/métodos , Personal de Salud , Comorbilidad , Atención a la Salud
2.
PLoS One ; 15(2): e0228633, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027700

RESUMEN

Obesity has reached epidemic proportions and is often accompanied by elevated levels of pro-inflammatory cytokines that promote many chronic diseases, including cancer. However, not all obese people develop these diseases and it would be very helpful to identify those at high risk early on so that preventative measures can be instituted. We performed an extensive evaluation of the effects of obesity on inflammatory markers, on innate and adaptive immune responses, and on blood cell composition to identify markers that might be useful in distinguishing those at elevated risk of cancer. Plasma samples from 42 volunteers with a BMI>35 had significantly higher CRP, PGE2, IL-1RA, IL-6 and IL-17 levels than 34 volunteers with normal BMIs. Of the cytokines and chemokines tested, only IL-17 was significantly higher in men with a BMI>35 than women with a BMI>35. As well, only IL-17 was significantly higher in those with a BMI>35 that had type 2 diabetes versus those without type 2 diabetes. Whole blood samples from participants with a BMI>35, when challenged with E. coli, produced significantly higher levels of IL-1RA while HSV-1 challenge resulted in significantly elevated IL-1RA and VEGF, and a non-significant increase in G-CSF and IL-8 levels. T cell activation of PBMCs, via anti-CD3 plus anti-CD28, resulted in significantly higher IFNγ production from volunteers with a BMI>35. In terms of blood cells, red blood cell distribution width (RDW), monocytes, granulocytes, CD4+T cells and Tregs were all significantly higher while, natural killer (NK) and CD8+ T cells were all significantly lower in the BMI>35 cohort, suggesting that obesity may reduce the ability to kill nascent tumor cells. Importantly, however, there was considerable person-to-person variation amongst participants with a BMI>35, with some volunteers showing markedly different values from controls and others showing normal levels of many parameters measured. These person-to-person variations may prove useful in identifying those at high risk of developing cancer.


Asunto(s)
Biomarcadores/sangre , Neoplasias/etiología , Obesidad/sangre , Obesidad/complicaciones , Adulto , Células Sanguíneas , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Inmunidad , Inflamación , Masculino , Neoplasias/sangre , Medición de Riesgo
3.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266865

RESUMEN

Despite recognition that biogeography and individuality shape the function and composition of the human skin microbiome, we know little about how extrinsic and intrinsic host factors influence its composition. To explore the contributions of these factors to skin microbiome variation, we profiled the bacterial microbiomes of 495 North American subjects (ages, 9 to 78 years) at four skin surfaces plus the oral epithelium using 16S rRNA gene amplicon sequencing. We collected subject metadata, including host physiological parameters, through standardized questionnaires and noninvasive biophysical methods. Using a combination of statistical modeling tools, we found that demographic, lifestyle, and physiological factors collectively explained 12 to 20% of the variability in microbiome composition. The influence of health factors was strongest on the oral microbiome. Associations between host factors and the skin microbiome were generally dominated by operational taxonomic units (OTUs) affiliated with the Clostridiales and Prevotella A subset of the correlations between microbial features and host attributes were site specific. To further explore the relationship between age and the skin microbiome of the forehead, we trained a Random Forest regression model to predict chronological age from microbial features. Age was associated mostly with two mutually coexcluding Corynebacterium OTUs. Furthermore, skin aging variables (wrinkles and hyperpigmented spots) were independently correlated to these taxa.IMPORTANCE Many studies have highlighted the importance of body site and individuality in shaping the composition of the human skin microbiome, but we still have a poor understanding of how extrinsic (e.g., lifestyle) and intrinsic (e.g., age) factors influence its composition. We characterized the bacterial microbiomes of North American volunteers at four skin sites and the mouth. We also collected extensive subject metadata and measured several host physiological parameters. Integration of host and microbial features showed that the skin microbiome was predominantly associated with demographic, lifestyle, and physiological factors. Furthermore, we uncovered reproducible associations between chronological age, skin aging, and members of the genus Corynebacterium Our work provides new understanding of the role of host selection and lifestyle in shaping skin microbiome composition. It also contributes to a more comprehensive appreciation of the factors that drive interindividual skin microbiome variation.


Asunto(s)
Bacterias/clasificación , Estado de Salud , Microbiota , Mucosa Bucal/microbiología , Piel/microbiología , Adolescente , Adulto , Anciano , Bacterias/genética , Niño , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Adulto Joven
4.
Sci Data ; 4: 170092, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28765786

RESUMEN

The scarcity of long-term data on soil microbial communities in the decades following timber harvesting limits current understanding of the ecological problems associated with maintaining the productivity of managed forests. The high complexity of soil communities and the heterogeneity of forest and soil necessitates a comprehensive approach to understand the role of microbial processes in managed forest ecosystems. Here, we describe a curated collection of well replicated, multi-faceted data from eighteen reforested sites in six different North American ecozones within the Long-term Soil Productivity (LTSP) Study, without detailed analysis of results or discussion. The experiments were designed to contrast microbial community composition and function among forest soils from harvested treatment plots with varying intensities of organic matter removal. The collection includes 724 bacterial (16S) and 658 fungal (ITS2) amplicon libraries, 133 shotgun metagenomic libraries as well as stable isotope probing amplicon libraries capturing the effects of harvesting on hemicellulolytic and cellulolytic populations. This collection serves as a foundation for the LTSP Study and other studies of the ecology of forest soil and forest disturbance.


Asunto(s)
Metagenómica , Microbiología del Suelo , Ecosistema , Bosques
5.
ISME J ; 11(11): 2552-2568, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28753210

RESUMEN

The growing demand for renewable, carbon-neutral materials and energy is leading to intensified forest land-use. The long-term ecological challenges associated with maintaining soil fertility in managed forests are not yet known, in part due to the complexity of soil microbial communities and the heterogeneity of forest soils. This study determined the long-term effects of timber harvesting, accompanied by varied organic matter (OM) removal, on bacterial and fungal soil populations in 11- to 17-year-old reforested coniferous plantations at 18 sites across North America. Analysis of highly replicated 16 S rRNA gene and ITS region pyrotag libraries and shotgun metagenomes demonstrated consistent changes in microbial communities in harvested plots that included the expansion of desiccation- and heat-tolerant organisms and decline in diversity of ectomycorrhizal fungi. However, the majority of taxa, including the most abundant and cosmopolitan groups, were unaffected by harvesting. Shifts in microbial populations that corresponded to increased temperature and soil dryness were moderated by OM retention, which also selected for sub-populations of fungal decomposers. Biogeographical differences in the distribution of taxa as well as local edaphic and environmental conditions produced substantial variation in the effects of harvesting. This extensive molecular-based investigation of forest soil advances our understanding of forest disturbance and lays the foundation for monitoring long-term impacts of timber harvesting.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Micorrizas/aislamiento & purificación , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Carbono/metabolismo , Bosques , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Metagenoma , Micorrizas/genética , América del Norte , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Tracheophyta/crecimiento & desarrollo , Tracheophyta/microbiología
7.
Front Microbiol ; 8: 537, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443069

RESUMEN

Soil management is vital for maintaining the productivity of commercial forests, yet the long-term impact of timber harvesting on soil microbial communities remains largely a matter of conjecture. Decomposition of plant biomass, comprised mainly of lignocellulose, has a broad impact on nutrient cycling, microbial activity and physicochemical characteristics of soil. At "Long-term Soil Productivity Study" sites in California dominated by Ponderosa pine, we tested whether clear-cut timber harvesting, accompanied by varying degrees of organic matter (OM) removal, affected the activity and structure of the cellulose-degrading microbial populations 16 years after harvesting. Using a variety of experimental approaches, including stable isotope probing with 13C-labeled cellulose in soil microcosms, we demonstrated that harvesting led to a decrease in net respiration and cellulolytic activity. The decrease in cellulolytic activity was associated with an increased relative abundance of thermophilic, cellulolytic fungi (Chaetomiaceae), coupled with a decreased relative abundance of cellulolytic bacteria, particularly members of Opitutaceae, Caulobacter, and Streptomycetaceae. In general, harvesting led to an increase in stress-tolerant taxa (i.e., also non-cellulolytic taxa), though our results indicated that OM retention mitigated population shifts via buffering against abiotic changes. Stable-isotope probing improved shotgun metagenome assembly by 20-fold and enabled the recovery of 10 metagenome-assembled genomes of cellulolytic bacteria and fungi. Our study demonstrates the putative cellulolytic activity of a number of uncultured taxa and highlights the mineral soil layer as a reservoir of uncharacterized diversity of cellulose-degraders. It also and contributes to a growing body of research showing persistent changes in microbial community structure in the decades following forest harvesting.

8.
ISME J ; 10(2): 363-75, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26274049

RESUMEN

Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated (13)C from labeled hemicellulose, analyzing (13)C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears resilient.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/aislamiento & purificación , Hongos/metabolismo , Polisacáridos/metabolismo , Microbiología del Suelo , Tracheophyta/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Carbono/metabolismo , Bosques , Hongos/clasificación , Hongos/genética , América del Norte , Factores de Tiempo , Tracheophyta/microbiología , Árboles/crecimiento & desarrollo , Árboles/microbiología
9.
Methods Enzymol ; 531: 305-29, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24060128

RESUMEN

Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics.


Asunto(s)
Archaea/genética , Consorcios Microbianos/genética , Biodiversidad , ADN Bacteriano/genética , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...