Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(13): 2880-2896.e17, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37327785

RESUMEN

Sperm motility is crucial to reproductive success in sexually reproducing organisms. Impaired sperm movement causes male infertility, which is increasing globally. Sperm are powered by a microtubule-based molecular machine-the axoneme-but it is unclear how axonemal microtubules are ornamented to support motility in diverse fertilization environments. Here, we present high-resolution structures of native axonemal doublet microtubules (DMTs) from sea urchin and bovine sperm, representing external and internal fertilizers. We identify >60 proteins decorating sperm DMTs; at least 15 are sperm associated and 16 are linked to infertility. By comparing DMTs across species and cell types, we define core microtubule inner proteins (MIPs) and analyze evolution of the tektin bundle. We identify conserved axonemal microtubule-associated proteins (MAPs) with unique tubulin-binding modes. Additionally, we identify a testis-specific serine/threonine kinase that links DMTs to outer dense fibers in mammalian sperm. Our study provides structural foundations for understanding sperm evolution, motility, and dysfunction at a molecular level.


Asunto(s)
Motilidad Espermática , Cola del Espermatozoide , Masculino , Animales , Bovinos , Cola del Espermatozoide/química , Cola del Espermatozoide/metabolismo , Semen , Microtúbulos/metabolismo , Axonema/química , Espermatozoides , Mamíferos
2.
Front Cell Dev Biol ; 9: 765673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957098

RESUMEN

To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission-fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.

3.
Front Cell Dev Biol ; 9: 772254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869370

RESUMEN

Classical in vitro fertilization (IVF) is still poorly successful in horses. This lack of success is thought to be due primarily to inadequate capacitation of stallion spermatozoa under in vitro conditions. In species in which IVF is successful, bicarbonate, calcium, and albumin are considered the key components that enable a gradual reorganization of the sperm plasma membrane that allows the spermatozoa to undergo an acrosome reaction and fertilize the oocyte. The aim of this work was to comprehensively examine contributors to stallion sperm capacitation by investigating bicarbonate-induced membrane remodelling steps, and elucidating the contribution of cAMP signalling to these events. In the presence of capacitating media containing bicarbonate, a significant increase in plasma membrane fluidity was readily detected using merocyanine 540 staining in the majority of viable spermatozoa within 15 min of bicarbonate exposure. Specific inhibition of soluble adenylyl cyclase (sAC) in the presence of bicarbonate by LRE1 significantly reduced the number of viable sperm with high membrane fluidity. This suggests a vital role for sAC-mediated cAMP production in the regulation of membrane fluidity. Cryo-electron tomography of viable cells with high membrane fluidity revealed a range of membrane remodelling intermediates, including destabilized membranes and zones with close apposition of the plasma membrane and the outer acrosomal membrane. However, lipidomic analysis of equivalent viable spermatozoa with high membrane fluidity demonstrated that this phenomenon was neither accompanied by a gross change in the phospholipid composition of stallion sperm membranes nor detectable sterol efflux (p > 0.05). After an early increase in membrane fluidity, a significant and cAMP-dependent increase in viable sperm with phosphatidylserine (PS), but not phosphatidylethanolamine (PE) exposure was noted. While the events observed partly resemble findings from the in vitro capacitation of sperm from other mammalian species, the lack of cholesterol removal appears to be an equine-specific phenomenon. This research will assist in the development of a defined medium for the capacitation of stallion sperm and will facilitate progress toward a functional IVF protocol for horse gametes.

4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34737233

RESUMEN

Mitochondria-cytoskeleton interactions modulate cellular physiology by regulating mitochondrial transport, positioning, and immobilization. However, there is very little structural information defining mitochondria-cytoskeleton interfaces in any cell type. Here, we use cryofocused ion beam milling-enabled cryoelectron tomography to image mammalian sperm, where mitochondria wrap around the flagellar cytoskeleton. We find that mitochondria are tethered to their neighbors through intermitochondrial linkers and are anchored to the cytoskeleton through ordered arrays on the outer mitochondrial membrane. We use subtomogram averaging to resolve in-cell structures of these arrays from three mammalian species, revealing they are conserved across species despite variations in mitochondrial dimensions and cristae organization. We find that the arrays consist of boat-shaped particles anchored on a network of membrane pores whose arrangement and dimensions are consistent with voltage-dependent anion channels. Proteomics and in-cell cross-linking mass spectrometry suggest that the conserved arrays are composed of glycerol kinase-like proteins. Ordered supramolecular assemblies may serve to stabilize similar contact sites in other cell types in which mitochondria need to be immobilized in specific subcellular environments, such as in muscles and neurons.


Asunto(s)
Citoesqueleto/ultraestructura , Mitocondrias/ultraestructura , Espermatozoides/ultraestructura , Animales , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Caballos , Masculino , Ratones , Porcinos
5.
Nat Commun ; 12(1): 3808, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155206

RESUMEN

Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail - the centriole - but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC's right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system.


Asunto(s)
Motilidad Espermática/fisiología , Animales , Centriolos/fisiología , Centriolos/ultraestructura , Humanos , Masculino , Mamíferos , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Cabeza del Espermatozoide/fisiología , Cola del Espermatozoide/fisiología , Cola del Espermatozoide/ultraestructura
6.
EMBO J ; 40(7): e107410, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694216

RESUMEN

Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.


Asunto(s)
Cola del Espermatozoide/ultraestructura , Animales , Axonema/ultraestructura , Movimiento Celular , Centriolos/ultraestructura , Cilios/fisiología , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Caballos , Masculino , Ratones , Ratones Endogámicos C57BL , Cola del Espermatozoide/fisiología , Porcinos
7.
J Neurochem ; 158(6): 1236-1243, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33222205

RESUMEN

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo-electron microscopy (cryo-EM) single-particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo-EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane-anchored ChE oligomers directly in their native environment-the cell.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Microscopía por Crioelectrón/métodos , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Colinesterasas/química , Colinesterasas/metabolismo , Predicción , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
Open Biol ; 10(9): 200186, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32931719

RESUMEN

Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.


Asunto(s)
Biología Celular/tendencias , Técnicas Citológicas , Células Germinativas/ultraestructura , Microscopía Electrónica/tendencias , Animales , Microscopía por Crioelectrón/métodos , Microscopía por Crioelectrón/tendencias , Fertilización/fisiología , Células Germinativas/fisiología , Humanos , Mamíferos , Microscopía Electrónica/métodos
9.
Proc Natl Acad Sci U S A ; 115(52): 13270-13275, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30538207

RESUMEN

The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Microscopía por Crioelectrón/métodos , Conformación Proteica , Multimerización de Proteína , Cristalografía por Rayos X , Humanos
10.
J Struct Biol ; 202(2): 150-160, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29289599

RESUMEN

Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/química , Programas Informáticos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...