Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
BMC Res Notes ; 17(1): 37, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267971

RESUMEN

BACKGROUND: In vitro data suggested reduced neutralizing capacity of sotrovimab, a monoclonal antibody, against Omicron BA.2 subvariant. However, limited in vivo data exist regarding clinical effectiveness of sotrovimab for coronavirus disease 2019 (COVID-19) due to Omicron BA.2. METHODS: A multicentre, retrospective cohort study was conducted at three Canadian academic tertiary centres. Electronic medical records were reviewed for patients ≥ 18 years with mild COVID-19 (sequencing-confirmed Omicron BA.1 or BA.2) treated with sotrovimab between February 1 to April 1, 2022. Thirty-day co-primary outcomes included hospitalization due to moderate or severe COVID-19; all-cause intensive care unit (ICU) admission, and all-cause mortality. Risk differences (BA.2 minus BA.1 group) for co-primary outcomes were adjusted with propensity score matching (e.g., age, sex, vaccination, immunocompromised status). RESULTS: Eighty-five patients were included (15 BA.2, 70 BA.1) with similar baseline characteristics between groups. Adjusted risk differences were non-statistically significant between groups for 30-day hospitalization (- 14.3%; 95% confidence interval (CI): - 32.6 to 4.0%), ICU admission (- 7.1%; 95%CI: - 20.6 to 6.3%), and mortality (- 7.1%; 95%CI: - 20.6 to 6.3%). CONCLUSIONS: No differences were demonstrated in hospitalization, ICU admission, or mortality rates within 30 days between sotrovimab-treated patients with BA.1 versus BA.2 infection. More real-world data may be helpful to properly assess sotrovimab's effectiveness against infections due to specific emerging COVID-19 variants.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , COVID-19 , Humanos , Estudios Retrospectivos , Canadá , Anticuerpos Monoclonales Humanizados/uso terapéutico
2.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257428

RESUMEN

The implementation of power line communications (PLC) in smart electricity grids provides us with exciting opportunities for real-time cable monitoring. In particular, effective fault classification and estimation methods employing machine learning (ML) models have been proposed in the recent past. Often, the research works presenting PLC for ML-aided cable diagnostics are based on the study of synthetically generated channel data. In this work, we validate ML-aided diagnostics by integrating measured channels. Specifically, we consider the concatenation of clustering as a data pre-processing procedure and principal component analysis (PCA)-based dimension reduction for cable anomaly detection. Clustering and PCA are trained with measurement data when the PLC network is working under healthy conditions. A possible cable anomaly is then identified from the analysis of the PCA reconstruction error for a test sample. For the numerical evaluation of our scheme, we apply an experimental setup in which we introduce degradations to power cables. Our results show that the proposed anomaly detector is able to identify a cable degradation with high detection accuracy and low false alarm rate.

3.
Can J Hosp Pharm ; 77(1): e3391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204499

RESUMEN

Background: Bloodstream infections (BSIs) rank among the top causes of death in North America. Despite the prevalence of these infections, there remain significant practice variations in the prescribing of antibiotics. Objective: To investigate current prescribing practices for management of uncomplicated streptococcal and enterococcal BSIs. Methods: A retrospective cohort study was conducted using charts for patients admitted to an acute care centre in British Columbia between November 16, 2019, and October 20, 2020. Adult patients (≥ 18 years of age) with a diagnosis of uncomplicated streptococcal or enterococcal BSI were included. Patients were excluded if they had polymicrobial bacteremia or deep-seated infection or had been admitted for no more than 48 hours. The primary outcomes were duration of antibiotic therapy (IV and oral) and time to appropriate oral therapy for treatment of BSI. The secondary outcomes were observed rates of re-initiation of antibiotics and readmission with recurrent BSI. Descriptive statistics were calculated and regression analysis was performed for the primary and secondary outcomes. Results: A total of 96 patients met the inclusion criteria. The median total duration of therapy for uncomplicated streptococcal and enterococcal BSI was about 2 weeks. Streptococcus pneumoniae BSIs were associated with a significantly shorter duration of IV therapy and were more likely to be associated with transition to oral antibiotics. No recurrent BSIs were observed in patients for whom therapy was transitioned to oral antibiotics. Conclusions: Further study is warranted to explore shorter duration of antibiotic therapy and transition to oral therapy as treatment approaches for uncomplicated streptococcal and enterococcal BSI. Other outcomes of interest for future research include determining the optimal time for transition to oral therapy.


Contexte: Les infections du sang (IS), ou bactériémies, se classent parmi les causes principales de décès en Amérique du Nord. Malgré leur prévalence, la pratique de la prescription d'antibiotiques continue de varier grandement. Objectif: Étudier les pratiques actuelles de la prescription pour la gestion des bactériémies à streptocoque et à entérocoque non compliquées. Méthodes: Une étude de cohorte rétrospective a été menée à l'aide de dossiers de patients admis à un centre de soins aigus en Colombie-Britannique entre le 16 novembre 2019 et le 20 octobre 2020. Des patients adultes (≥ 18 ans) ayant reçu un diagnostic de bactériémie a streptocoque ou à entérocoque non compliquée ont été inclus. Les patients étaient exclus s'ils présentaient une bactériémie polymicrobienne ou une infection profonde ou s'ils avaient été hospitalisés depuis moins de 48 heures. Les résultats principaux étaient la durée de l'antibiothérapie (IV et orale) et le temps écoulé avant la transition à une thérapie orale adaptée pour le traitement de l'IS. Les résultats secondaires étaient les taux observés de reprise des antibiotiques et de réadmission avec une IS récurrente. Des statistiques descriptives ont été calculées et une analyse de régression a été effectuée pour les résultats principaux et secondaires. Résultats: Au total, 96 patients répondaient aux critères d'inclusion. La durée totale médiane du traitement pour les bactériémies à streptocoque et à entérocoque non compliquées était d'environ 2 semaines. Les bactériémies à Streptococcus pneumoniae étaient associées à une durée significativement plus courte du traitement IV et étaient plus susceptibles d'être associées à la transition vers des antibiotiques oraux. Aucune IS récurrente n'a été observée chez les patients pour lesquels le traitement était passé à des antibiotiques oraux. Conclusions: Une étude plus approfondie est justifiée pour explorer une durée plus courte de l'antibiothérapie et la transition vers une thérapie orale en tant qu'approches de traitement pour les IS à streptocoque et à entérocoque non compliquées. D'autres résultats d'intérêt pour les recherches futures comprennent la détermination du moment optimal pour la transition vers la thérapie orale.

4.
IEEE J Biomed Health Inform ; 28(4): 1917-1926, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37801389

RESUMEN

Protein methylation is one of the most important reversible post-translational modifications (PTMs), playing a vital role in the regulation of gene expression. Protein methylation sites serve as biomarkers in cardiovascular and pulmonary diseases, influencing various aspects of normal cell biology and pathogenesis. Nonetheless, the majority of existing computational methods for predicting protein methylation sites (PMSP) have been constructed based on protein sequences, with few methods leveraging the topological information of proteins. To address this issue, we propose an innovative framework for predicting Methylation Sites using Graphs (GraphMethySite) that employs graph convolution network in conjunction with Bayesian Optimization (BO) to automatically discover the graphical structure surrounding a candidate site and improve the predictive accuracy. In order to extract the most optimal subgraphs associated with methylation sites, we extend GraphMethySite by coupling it with a hybrid Bayesian optimization (together named GraphMethySite +) to determine and visualize the topological relevance among amino-acid residues. We evaluated our framework on two extended protein methylation datasets, and empirical results demonstrate that it outperforms existing state-of-the-art methylation prediction methods.


Asunto(s)
Lisina , Proteínas , Humanos , Lisina/química , Lisina/metabolismo , Teorema de Bayes , Proteínas/química , Metilación , Procesamiento Proteico-Postraduccional , Biología Computacional/métodos
5.
J Antimicrob Chemother ; 79(1): 55-60, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37965757

RESUMEN

OBJECTIVES: To utilize long-read nanopore sequencing (R10.4.1 flowcells) for WGS of a cluster of MDR Shigella sonnei, specifically characterizing genetic predictors of antimicrobial resistance (AMR). METHODS: WGS was performed on S. sonnei isolates identified from stool and blood between September 2021 and October 2022. Bacterial DNA from clinical isolates was extracted on the MagNA Pure 24 and sequenced on the GridION utilizing R10.4.1 flowcells. Phenotypic antimicrobial susceptibility testing was interpreted based on CLSI breakpoints. Sequencing data were processed with BugSeq, and AMR was assessed with BugSplit and ResFinder. RESULTS: Fifty-six isolates were sequenced, including 53 related to the cluster of cases. All cluster isolates were identified as S. sonnei by sequencing, with global genotype 3.6.1.1.2 (CipR.MSM5), MLST 152 and PopPUNK cluster 3. Core genome MLST (cgMLST, examining 2513 loci) and reference-based MLST (refMLST, examining 4091 loci) both confirmed the clonality of the isolates. Cluster isolates were resistant to ampicillin (blaTEM-1), trimethoprim/sulfamethoxazole (dfA1, dfrA17; sul1, sul2), azithromycin (ermB, mphA) and ciprofloxacin (gyrA S83L, gyrA D87G, parC S80I). No genomic predictors of resistance to carbapenems were identified. CONCLUSIONS: WGS with R10.4.1 enabled rapid sequencing and identification of an MDR S. sonnei community cluster. Genetic predictors of AMR were concordant with phenotypic antimicrobial susceptibility testing.


Asunto(s)
Disentería Bacilar , Secuenciación de Nanoporos , Nanoporos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Shigella sonnei/genética , Tipificación de Secuencias Multilocus , Pruebas de Sensibilidad Microbiana , Disentería Bacilar/microbiología , Farmacorresistencia Bacteriana/genética
6.
PLoS Negl Trop Dis ; 17(10): e0011669, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844114

RESUMEN

Urban Norway rats (Rattus norvegicus) can carry various human pathogens, and may be involved in pathogen propagation and transmission to humans. From January 31-August 14, 2021, a community outbreak of Shigella flexneri serotype 2a occurred among unhoused or poorly housed people in the Downtown Eastside neighborhood of Vancouver, British Columbia, Canada. The source could not be identified; however, patients reported contact with rats, and previous studies indicated transmission of rat-associated zoonotic pathogens among the unhoused or poorly housed residents of this neighborhood. The study objective was to determine if rats trapped in the outbreak area were carriers of Shigella spp. and other zoonotic enteric pathogens. From March 23-April 9, 2021, 22 rats were lethally trapped within the outbreak area. Colonic content was analyzed using the BioFire FilmArray Gastrointestinal (multiplex PCR) panel for human enteropathogens, which detected: Campylobacter spp. (9/22), Clostridioides difficile (3/22), Yersinia enterocolitica (5/22), Cryptosporidium spp. (8/22), Giardia duodenalis (5/22), Rotavirus A (1/22), enteroaggressive Escherichia coli (2/22), enteropathogenic E. coli (10/22), and Shigella spp. or enteroinvasive E. coli (EIEC) (3/22). An ipaH PCR assay was used for targeted detection of Shigella spp./EIEC, with five rats positive. Two samples contained insertion sites unique to S. flexneri isolated from the human outbreak. This study highlights the potential for rats to carry a broad range of human pathogens, and their possible role in pathogen maintenance and/or transmission.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Shigella , Humanos , Animales , Ratas , Colombia Británica/epidemiología , Escherichia coli , Heces , Reacción en Cadena de la Polimerasa Multiplex
8.
PLoS Comput Biol ; 19(6): e1011207, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37339154

RESUMEN

Interactions between transcription factor and target gene form the main part of gene regulation network in human, which are still complicating factors in biological research. Specifically, for nearly half of those interactions recorded in established database, their interaction types are yet to be confirmed. Although several computational methods exist to predict gene interactions and their type, there is still no method available to predict them solely based on topology information. To this end, we proposed here a graph-based prediction model called KGE-TGI and trained in a multi-task learning manner on a knowledge graph that we specially constructed for this problem. The KGE-TGI model relies on topology information rather than being driven by gene expression data. In this paper, we formulate the task of predicting interaction types of transcript factor and target genes as a multi-label classification problem for link types on a heterogeneous graph, coupled with solving another link prediction problem that is inherently related. We constructed a ground truth dataset as benchmark and evaluated the proposed method on it. As a result of the 5-fold cross experiments, the proposed method achieved average AUC values of 0.9654 and 0.9339 in the tasks of link prediction and link type classification, respectively. In addition, the results of a series of comparison experiments also prove that the introduction of knowledge information significantly benefits to the prediction and that our methodology achieve state-of-the-art performance in this problem.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Factores de Transcripción , Humanos , Bases de Datos Factuales , Factores de Transcripción/genética , Redes Reguladoras de Genes , Proteoma , Algoritmos , Biología de Sistemas , Ontología de Genes
9.
Heliyon ; 9(5): e15689, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37234658

RESUMEN

Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.

10.
Microbiol Spectr ; 11(4): e0477722, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37255425

RESUMEN

During an investigation into a cluster of Shigella flexneri serotype 2a cases in an underserved community, we assessed the relatedness of human and rat S. flexneri isolates utilizing a novel PCR targeting insertion sites (IS-PCR) of mobile elements in the Shigella genome characteristic of the cluster strain. Whole-genome sequences of S. flexneri (n = 50) associated with the cluster were analyzed. De novo genome assemblies were analyzed by a Geneious V10.2.6 motif search, and two unique IS were identified in all human Shigella sequences of the local cluster. Hydrolysis probe PCR assays were designed to detect these sequences consisting of forward and reverse primers to amplify across each insertion site and a hydrolysis probe spanning the insertion site. IS-PCR was performed for three Shigella PCR-positive culture-negative rat intestine specimens from this community. Both insertion sites were detected in the de novo genome assemblies of all clinical S. flexneri isolates (n = 50). Two of the three PCR-positive culture-negative rat samples were positive for both unique ISs identified in the human S. flexneri isolates, suggesting that the rat Shigella species strains were closely related to the human strains in the cluster. The cycle threshold (Ct) values were >35, indicating that the bacterial load was very low in the rat samples. Two unique IS were identified in clinical isolates from a community S. flexneri cluster. Both IS targets were identified in PCR-positive (Shigella spp.), culture-negative rat tissue and clinical isolates from humans, indicating relatedness. IMPORTANCE This article describes a novel molecular method to show relatedness between bacterial infections, which may not be able to grow in the laboratory due to treatment with antibiotics or for bacteria requiring unique conditions to grow well. Uniquely, we applied this technique to Shigella isolates from human cases associated with a local cluster in an underserved community, as well as rat samples from the same community. We believe that this novel approach can serve as a complementary method to support outbreak/cluster investigation for Shigella spp.


Asunto(s)
Disentería Bacilar , Shigella , Humanos , Animales , Ratas , Disentería Bacilar/epidemiología , Disentería Bacilar/microbiología , Elementos Transponibles de ADN , Shigella/genética , Shigella flexneri/genética , Reacción en Cadena de la Polimerasa
11.
Acta Biomater ; 166: 430-446, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37121367

RESUMEN

The jackfruit is the largest fruit on the Earth, reaching upwards of 35 kg and falling from heights of 25 m. To survive such high energy impacts, it has evolved a unique layered configuration with a thorny exterior and porous tubular underlayer. During compression, these layers exhibit a progressive collapse mechanism where the tubules are first to deform, followed by the thorny exterior, and finally the mesocarp layer in between. The thorns are composed of lignified bundles which run longitudinally from the base of the thorn to the tip and are embedded in softer parenchymal cells, forming a fiber reinforced composite. The mesocarp contains more lignin than any of the other layers while the core appears to contain more pectin giving rise to variations in compressive and viscoelastic properties between the layers. The surface thorns provide a compelling impact-resistant feature for bioinspiration, with a cellular structure that can withstand large deformation without failing and wavy surface features which densify during compression without fracturing. Even the conical shape of the thorns is valuable, presenting a gradually increasing surface area during axial collapse. A simplified model of this mechanism is put forward to describe the force response of these features. The thorns also distribute damage laterally during impact and deflect cracks along their interstitial valleys. These phenomena were observed in 3D printed, jackfruit-inspired designs which performed markedly better than control prints with the same mass. STATEMENT OF SIGNIFICANCE: Many biological materials have evolved remarkable structures that enhance their mechanical performance and serve as sources of inspiration for engineers. Plants are often overlooked in this regard yet certain botanical components, like nuts and fruit, have shown incredible potential as blueprints for improved impact resistant designs. The jackfruit is the largest fruit on Earth and generates significant falling impact energies. Here, we explore the jackfruit's structure and its mechanical capabilities for the first time. The progressive failure imparted by its multilayered design and the unique collapse mode of the surface thorns are identified as key mechanisms for improving the fruit's impact resistance. 3D printing is used to show that these structure-property benefits can be successfully transferred to engineering materials.


Asunto(s)
Frutas , Fenómenos Mecánicos
12.
Allergy Asthma Clin Immunol ; 19(1): 30, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072861

RESUMEN

BACKGROUND: Inaccurate penicillin allergy labels lead to inappropriate antibiotic prescriptions and harmful patient consequences. System-wide efforts are needed to remove incorrect penicillin allergy labels, but more health services research is required on how to best deliver these services. METHODS: Data was extracted from five hospitals in Vancouver, British Columbia, Canada from October 2018-May 2022. The primary outcomes of this study were to outline de-labelling protocol designs, identify the roles of various healthcare professionals in de-labelling protocols and identify rates of de-labelling penicillin allergies and associated adverse events at various institutions. Our secondary outcome was to describe de-labelling rates for special populations, including pediatric, obstetric and immunocompromised subpopulations. To achieve these outcomes, participating institutions provided their de-labelling protocol designs and data on program participants. Protocols were then compared to find common themes and differences. Furthermore, adverse events were reviewed and percentages of patients de-labelled at each institution and in total were calculated. RESULTS: Protocols demonstrated a high level of variability, including different methods of participant identification, risk-stratification and roles of providers. All protocols used oral and direct oral challenges, heavily involved pharmacists and had physician oversight. Despite the differences, of the 711 patients enrolled in all programs, 697 (98.0%) were de-labelled. There were 9 adverse events (1.3%) with oral challenges with mainly minor symptoms. CONCLUSIONS: Our data demonstrates that de-labelling programs effectively and safely remove penicillin allergy labels, including pediatric, obstetric and immunocompromised patients. Consistent with current literature, most patients with a penicillin allergy label are not allergic. De-labelling programs could benefit from increasing clinician engagement by increasing accessibility of resources to providers, including guidance for de-labelling of special populations.

13.
JOR Spine ; 6(1): e1238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36994456

RESUMEN

Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.

14.
Open Forum Infect Dis ; 10(3): ofad073, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910697

RESUMEN

Background: Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods: We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results: Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions: Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.

15.
J Infect Dis ; 227(7): 838-849, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35668700

RESUMEN

BACKGROUND: Longer-term humoral responses to 2-dose coronavirus disease 2019 (COVID-19) vaccines remain incompletely characterized in people living with human immunodeficiency virus (HIV) (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, angiotensin-converting enzyme 2 (ACE2) displacement, and viral neutralization against wild-type and Omicron strains up to 6 months after 2-dose vaccination, and 1 month after the third dose, in 99 PLWH receiving suppressive antiretroviral therapy and 152 controls. RESULTS: Although humoral responses naturally decline after 2-dose vaccination, we found no evidence of lower antibody concentrations or faster rates of antibody decline in PLWH compared with controls after accounting for sociodemographic, health, and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after 2 doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than responses against wild-type virus. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after 2- and 3-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , VIH , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunación , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Antivirales
16.
AIDS ; 37(5): 709-721, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36545783

RESUMEN

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Formación de Anticuerpos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , SARS-CoV-2 , Vacunación , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
17.
IEEE Trans Cybern ; 53(9): 5854-5866, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36112562

RESUMEN

Surrogate-assisted evolutionary algorithms (SAEAs) have shown promising performance for solving expensive optimization problems (EOPs) whose true evaluations are computationally or physically expensive. However, most existing SAEAs only focus on the problems with low dimensionality and they rarely consider solving large-scale EOPs (LSEOPs). To fill this research gap, this article proposes an ensemble surrogate-based coevolutionary optimizer for tackling LSEOPs. First, some local surrogate models are trained with low-dimensional data subsets by using feature selection on the large-scale decision variables, a part of which are used to build a selective ensemble surrogate for better approximating the target LSEOP. Then, a coevolutionary optimizer guided by the ensemble surrogate is designed by running two populations to cooperatively solve the target LSEOP and the simplified auxiliary problem. The information of offspring from the two populations is shared to facilitate the coevolution process, which can exploit the searching experience from the simplified auxiliary problem to help solving the target LSEOP. Finally, an effective infill selection criterion is used to update the ensemble surrogate and enhance its approximate performance. To evaluate the performance of the proposed algorithm, a number of well-known benchmark problems are used and the experimental results validate our superior performance over nine state-of-the-art SAEAs on most cases.

18.
Front Immunol ; 13: 947021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148225

RESUMEN

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.


Asunto(s)
COVID-19 , Vacunas Virales , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , SARS-CoV-2 , Vacunación
19.
Acta Biomater ; 151: 426-445, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995409

RESUMEN

The horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique hierarchical structure which contains tubular, lamellar, and gradient configurations. In this study, structural characterization of the hoof wall was performed revealing features previously unknown. Prominent among them are tubule bridges, which are imaged and quantified. The hydration-dependent viscoelasticity of the hoof wall is described by a simplified Maxwell-Weichert model with two characteristic relaxation times corresponding to nanoscale and mesoscale features. Creep and relaxation tests reveal that the specific hydration gradient in the hoof keratin likely leads to reduced internal stresses that arise from spatial stiffness variations. To better understand realistic impact modes for the hoof wall in-vivo, drop tower tests were executed on hoof wall samples. Fractography revealed that the hoof wall's reinforced tubular structure dominates at lower impact energies, while the intertubular lamellae are dominant at higher impact energies. Broken fibers were observed on the surface of the tubules after failure, suggesting that the physically intertwined nature of the tubule reinforcement and intertubular matrix improves the toughness of this natural fiber reinforced composite. The augmented understanding of the structure-mechanical property relationship in dynamic loading led to the design of additively manufactured bioinspired structures, which were evaluated in quasistatic and dynamic loadings. The inclusion of gradient structures and lamellae significantly reduced the damage sustained in drop tower tests, while tubules increased the energy absorption of samples tested in compact tension. The samples most similar to the hoof wall displayed remarkably consistent fracture control properties. STATEMENT OF SIGNIFICANCE: The horse hoof wall, capable of withstanding large, repeated, dynamic loads, has been touted as a candidate for impact-resistant bioinspiration. However, our understanding of this biological material and its translation into engineered designs is incomplete. In this work, new features of the horse hoof wall are quantified and the hierarchical failure mechanisms of this remarkable material under near-natural loading conditions are uncovered. A model of the hoof wall's viscoelastic response, based on studies of other keratinous materials, was developed. The role of hydration, strain rate, and impact energy on the material's response were elucidated. Finally, multi-material 3D printed designs based on the hoof's meso/microstructure were fabricated and exhibited advantageous energy absorption and fracture control relative to control samples.


Asunto(s)
Fracturas Óseas , Pezuñas y Garras , Animales , Extremidades , Caballos , Queratinas/química
20.
Pract Lab Med ; 32: e00300, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36035320

RESUMEN

Objectives: Verifying new reagent or calibrator lots is crucial for maintaining consistent test performance. The Institute for Quality Management in Healthcare (IQMH) conducted a patterns-of-practice survey and follow-up case study to collect information on lot verification practices in Ontario. Methods: The survey had 17 multiple-choice questions and was distributed to 183 licensed laboratories. Participants provided information on materials used and approval/rejection criteria for their lot verification procedures for eight classes of testing systems. The case study provided a set of lot comparison data and was distributed to 132 laboratories. Responses were reviewed by IQMH scientific committees. Results: Of the 175 laboratories that responded regarding reagent lot verifications, 74% verified all tests, 11% some, and 15% none. Of the 171 laboratories that responded regarding calibrator lot verifications, 39% verified all calibrators, 4% some, and 57% none. Reasons for not performing verifications ranged from difficulty performing parallel testing to high reagent cost. For automated chemistry assays and immunoassays, 23% of laboratories did not include patient-derived materials in reagent lot verifications and 42% included five to six patient materials; 58% of laboratories did not include patient-derived materials in calibrator lot verifications and 23% included five to six patient materials. Different combinations of test-specific rules were used for acceptance criteria. For a failed lot, 98% of laboratories would investigate further and take corrective actions. Forty-three percent of laboratories would accept the new reagent lot in the case study. Conclusion: Responses to the survey and case study demonstrated variability in lot verification practices among laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...