Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Rep ; 43(6): 114342, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865240

RESUMEN

The nucleus pulposus (NP) in the intervertebral disc (IVD) arises from embryonic notochord. Loss of notochordal-like cells in humans correlates with onset of IVD degeneration, suggesting that they are critical for healthy NP homeostasis and function. Comparative transcriptomic analyses identified expression of progenitor-associated genes (GREM1, KRT18, and TAGLN) in the young mouse and non-degenerated human NP, with TAGLN expression reducing with aging. Lineage tracing using Tagln-CreERt2 mice identified peripherally located proliferative NP (PeriNP) cells in developing and postnatal NP that provide a continuous supply of cells to the entire NP. PeriNP cells were diminished in aged mice and absent in puncture-induced degenerated discs. Single-cell transcriptomes of postnatal Tagln-CreERt2 IVD cells indicate enrichment for TGF-ß signaling in Tagln descendant NP sub-populations. Notochord-specific removal of TGF-ß/BMP mediator Smad4 results in loss of Tagln+ cells and abnormal NP morphologies. We propose Tagln+ PeriNP cells are potential progenitors crucial for NP homeostasis.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Células Madre , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Animales , Humanos , Ratones , Células Madre/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Factor de Crecimiento Transformador beta/metabolismo
2.
JOR Spine ; 5(4): e1227, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601371

RESUMEN

Background: Adolescent idiopathic scoliosis (AIS) refers to a three-dimensional spinal deformity which has a typical onset during adolescence. In most cases, the cause of the deformity cannot be clearly identified. Unbalanced paraspinal muscle activity in AIS patients was reported and hypoxia was implicated to regulate myogenesis. This study aims to investigate the association between myogenesis/muscle toning and HIF-αs activity in the pathogenesis of AIS. Methods: HIF-αs expression was examined by enzyme-linked immunosorbent assay and western blot in paraspinal myoblasts isolated from 18 subjects who underwent deformity correction surgery. QPCR was conducted to measure the gene expression levels of perinatal muscle fiber markers MYH3, MYH8; slow twitch muscle fiber markers MHY7; fast twitch muscle fiber markers MYH4; and myogenic regulatory factors MYF5 and MYOG. Slow and fast twitch muscle fiber composition in concave/convex paraspinal musculature of AIS subjects was evaluated by immunostaining of myosin heavy chain type I (MyHC I) and myosin heavy chain type II (MyHC II). Results: Reduced HIF-2α induction under hypoxia was found in paraspinal myoblast culture of 33% AIS subjects. We detected a suppression of perinatal and slow twitch muscle fiber associated genes, but not fast twitch muscle fiber-associated genes and myogenic regulatory factors in HIF-2α misexpressed AIS myoblasts. Distinct reduction of slow twitch muscle fiber was evidenced in convex paraspinal musculature, suggesting an asymmetric expression of slow twitch muscle fiber in HIF-2α misexpressed AIS patients. Conclusions: This study indicates an association of abnormal HIF-2α expression in paraspinal myoblasts and a disproportionate slow twitch muscle fiber content in the convexity of the curvature in a subset of AIS subjects, suggesting HIF-2α dysregulation as a possible risk factor for AIS. The role of HIF-2α in paraspinal muscle function during spinal growth and its relevance in AIS prognosis warrants further investigation.

3.
JOR Spine ; 4(3): e1149, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34611585

RESUMEN

BACKGROUND: Aberrant mechanical loading of the spine causes intervertebral disc (IVD) degeneration and low back pain. Current therapies do not target the mediators of the underlying mechanosensing and mechanotransduction pathways, as these are poorly understood. This study investigated the role of the mechanosensitive transient receptor potential vanilloid 4 (TRPV4) ion channel in dynamic compression of bovine nucleus pulposus (NP) cells in vitro and mouse IVDs in vivo. METHODS: Degenerative changes and the expression of the inflammatory mediator cyclooxygenase 2 (COX2) were examined histologically in the IVDs of mouse tails that were dynamically compressed at a short repetitive hyperphysiological regime (vs sham). Bovine NP cells embedded in an agarose-collagen hydrogel were dynamically compressed at a hyperphysiological regime in the presence or absence of the selective TRPV4 antagonist GSK2193874. Lactate dehydrogenase (LDH) and prostaglandin E2 (PGE2) release, as well as phosphorylation of mitogen-activated protein kinases (MAPKs), were analyzed. Degenerative changes and COX2 expression were further evaluated in the IVDs of trpv4-deficient mice (vs wild-type; WT). RESULTS: Dynamic compression caused IVD degeneration in vivo as previously shown but did not affect COX2 expression. Dynamic compression significantly augmented LDH and PGE2 releases in vitro, which were significantly reduced by TRPV4 inhibition. Moreover, TRPV4 inhibition during dynamic compression increased the activation of the extracellular signal-regulated kinases 1/2 (ERK) MAPK pathway by 3.13-fold compared to non-compressed samples. Trpv4-deficient mice displayed mild IVD degeneration and decreased COX2 expression compared to WT mice. CONCLUSIONS: TRPV4 therefore regulates COX2/PGE2 and mediates cell damage induced by hyperphysiological dynamic compression, possibly via ERK. Targeted TRPV4 inhibition or knockdown might thus constitute promising therapeutic approaches to treat patients suffering from IVD pathologies caused by aberrant mechanical stress.

4.
JOR Spine ; 4(2): e1164, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34337338

RESUMEN

Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the disc histopathology is equally distributed and not driven by only a few features. We tested the new histopathological scoring criteria using images of lumbar and coccygeal discs from different IDD models of both sexes, including genetic, needle-punctured, static compressive models, and natural aging mice spanning neonatal to old age stages. Moreover, disc sections from common histological preparation techniques and stains including H&E, SafraninO/Fast green, and FAST were analyzed to enable better cross-study comparisons. Fleiss's multi-rater agreement test shows significant agreement by both experienced and novice multiple raters for all 14 features on several mouse models and sections prepared using various histological techniques. The sensitivity and specificity of the new scoring system was validated using artificial intelligence and supervised and unsupervised machine learning algorithms, including artificial neural networks, k-means clustering, and principal component analysis. Finally, we applied the new scoring system on established disc degeneration models and demonstrated high sensitivity and specificity of histopathological scoring changes. Overall, the new histopathological scoring system offers the ability to quantify histological changes in mouse models of disc degeneration and regeneration with high sensitivity and specificity.

5.
Aging Cell ; 19(11): e13254, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33084203

RESUMEN

Intervertebral disc degeneration (IDD), a major cause of low back pain, occurs with ageing. The core of the intervertebral disc, the nucleus pulposus (NP), embedded in a proteoglycan-rich and gelatinous matrix, is derived from the embryonic notochord. With IDD, the NP becomes fibrous, containing fewer cells, which are fibroblastic and of unknown origin. Here, we used a lineage tracing strategy to investigate the origin of cells in the NP in injury-induced mouse IDD. We established a Foxa2 notochord-specific enhancer-driven Cre transgenic mouse model (Foxa2mNE-Cre) that acts only in the embryonic to foetal period up to E14.5, to genetically label notochord cells with enhanced green fluorescent protein (EGFP). When this mouse is crossed to one carrying a Cre recombinase reporter, Z/EG, EGFP-labelled NP cells are present even at 2 years of age, consistent with their notochordal origin. We induced tail IDD in Foxa2mNE-Cre; Z/EG mice by annulus puncture and observed the degenerative changes for 12 weeks. Soon after puncture, EGFP-labelled NP cells showed strong Col2a1+ expression unlike uninjured control NP. Later, accompanying fibrotic changes, EGFP-positive NP cells expressed fibroblastic and myofibroblastic markers such as Col1a1, ASMA, FAPA and FSP-1. The number of EGFP+ cells co-expressing the fibroblastic markers increased with time after puncture. Our findings suggest resident NP cells initially upregulate Col2a1+ and later transform into fibroblast-like cells during injury-mediated disc degeneration and remodelling. This important discovery concerning the cellular origin of fibrotic pathology in injury-induced IDD has implications for management in disease and ageing.


Asunto(s)
Fibrosis/fisiopatología , Disco Intervertebral/fisiopatología , Núcleo Pulposo/metabolismo , Animales , Ratones , Ratones Transgénicos
6.
Cell Rep ; 30(8): 2791-2806.e5, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101752

RESUMEN

Intervertebral disc degeneration might be amenable to stem cell therapy, but the required cells are scarce. Here, we report the development of a protocol for directed in vitro differentiation of human pluripotent stem cells (hPSCs) into notochord-like and nucleus pulposus (NP)-like cells of the disc. The first step combines enhancement of ACTIVIN/NODAL and WNT and inhibition of BMP pathways. By day 5 of differentiation, hPSC-derived cells express notochordal cell characteristic genes. After activating the TGF-ß pathway for an additional 15 days, qPCR, immunostaining, and transcriptome data show that a wide array of NP markers are expressed. Transcriptomically, the in vitro-derived cells become more like in vivo adolescent human NP cells, driven by a set of influential genes enriched with motifs bound by BRACHYURY and FOXA2, consistent with an NP cell-like identity. Transplantation of these NP-like cells attenuates fibrotic changes in a rat disc injury model of disc degeneration.


Asunto(s)
Diferenciación Celular , Notocorda/citología , Núcleo Pulposo/citología , Células Madre Pluripotentes/citología , Adolescente , Adulto , Animales , Línea Celular , Femenino , Perfilación de la Expresión Génica , Genes Reporteros , Genoma Humano , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Degeneración del Disco Intervertebral/patología , Masculino , Ratas Sprague-Dawley
7.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974795

RESUMEN

Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1ß) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.


Asunto(s)
Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Degeneración del Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Canal Catiónico TRPA1/biosíntesis , Canales Catiónicos TRPV/biosíntesis , Animales , Señalización del Calcio , Matriz Extracelular/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Ratones , Ratones Noqueados , Núcleo Pulposo/patología
8.
Nat Rev Rheumatol ; 15(2): 102-112, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643232

RESUMEN

Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.


Asunto(s)
Células Madre Adultas/fisiología , Disco Intervertebral/citología , Animales , Homeostasis , Humanos , Disco Intervertebral/fisiología , Degeneración del Disco Intervertebral/fisiopatología , Regeneración
9.
Int Orthop ; 43(4): 1003-1010, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30498908

RESUMEN

Intervertebral disc (IVD) degeneration (IDD) is considered as one of the major causes for low back pain (LBP). However, conventional surgical approaches for treating LBP do not aim to counter the degeneration. Biological interventions have been investigated with an attempt to regenerate the IVD by restoring its matrices and cell activities. This review summarizes the current clinical trials that explore the efficacy of covering cell-, growth factor-, and small molecule-based approaches. While investigations of growth factor- and small molecule-based therapies are still preliminary, intradiscal delivery of mesenchymal stromal cells has been more widely adopted and shown positive results in addressing the pain and the associated physical disability, albeit to a lower extent than observed in previous animal studies. Strategies that potentiate the endogenous disc progenitors may offer a valid alternative to the exogenous cell transplantation. Identification of the novel biologics to arrest IDD phenotype may potentiate disc repair in future. Large-scale, high-quality long-term trials should be conducted to clarify the safety and efficacy of these therapies.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Células Madre Mesenquimatosas , Regeneración , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular , Degeneración del Disco Intervertebral/terapia , Dolor de la Región Lumbar
10.
Eur Spine J ; 27(3): 728-736, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29214370

RESUMEN

PURPOSE: Fresh frozen intervertebral disc allograft transplantation has been reported to be a viable treatment option for advanced degenerative disc diseases, but rapid degeneration of the postoperative allograft was found. Loss of nutrient supply is believed to be the most likely inducer because the disc allografts have to endure in an ischaemic environment until the nutrient pathway is re-established. The aim of this study was to focus on the revascularisation of the disc allograft after transplantation in goats. METHODS: Twenty male goats were used in this study. Intervertebral disc allograft transplantation was performed at L4/L5. Groups of five goats were killed at 1.5, 6 and 12 m postoperatively, respectively. The transplanted segments were harvested, fixed, sagittally cut and decalcified for H&E staining and immunochemistry to observe the blood vessel formation at the endplates, anterior outer annulus, posterior outer annulus, inner annulus and the nucleus. The blood vessel density and the sectional vessel area were measured. RESULTS: Blood vessels were first found in the marrow space of the bony endplate and the outer annulus at 1.5 month postoperatively. Then, they were able to penetrate to reach the cartilaginous endplate and the inner annulus after 6 months. Interestingly, the endplate area possessed the most abundant blood vessels, with the highest level of vessel density and area at the final follow-up. None of these newly formed vessels invaded the nucleus during the observation period. CONCLUSIONS: Revascularisation of the postoperative disc allograft has been determined, but its pattern was different from that in adult normal discs, suggesting that the typical nutrient diffusion pattern may be affected after transplantation.


Asunto(s)
Disco Intervertebral/irrigación sanguínea , Disco Intervertebral/trasplante , Vértebras Lumbares/cirugía , Neovascularización Fisiológica , Aloinjertos , Animales , Cabras , Degeneración del Disco Intervertebral/cirugía , Modelos Animales
11.
J Orthop Res ; 36(1): 233-243, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28636254

RESUMEN

A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018.


Asunto(s)
Disco Intervertebral/patología , Factores de Edad , Animales , Femenino , Degeneración del Disco Intervertebral/patología , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos
12.
Connect Tissue Res ; 58(6): 573-585, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28102712

RESUMEN

Bone morphogenetic proteins (BMPs) play roles in promoting cell anabolism, especially in extracellular matrix production. The difference between BMP members in their capacity to modulate intervertebral disc cell activity is yet to be defined. BMP-7/OP-1 has been shown to retard disc degeneration. We compared the activity of BMP-7 with that of BMP-2 on nucleus pulposus (NP) cell phenotype and function, and investigated how they differentially affect the gene expression profiles of signaling cascade components in human NP cells under degenerative states. We found that while both BMP-2 and BMP-7 enhanced matrix production of bovine NP cells, BMP-7 is more potent than BMP-2 at various dosages (50-800 ng/ml). BMP-7 exerted a relatively stronger stimulation on sulfated glycosaminoglycan production and proliferation in human NP cells. Degenerated NP cells showed an overall weaker response to the BMPs than non-degenerated cells, and were more sensitive to BMP-7 than BMP-2 stimulation. Compared to BMP-2, BMP-7 not only induced the gene expression of canonical BMP components, but also evoked changes in MAPKs as well as CREB1 and EP300 gene expression in degenerated NP cells, suggesting potential activation of the cAMP dependent protein kinase related pathways. In contrast to BMP-2, BMP-7 concomitantly inhibited the expression of profibrotic genes. We propose that BMP-2 and BMP-7, and likely other BMPs, may operate multifaceted but discrete molecular machineries that give rise to their different capacity in regulating NP cell phenotype. Further investigations into such differential capacity may possibly derive alternative cues important for IVD repair or engineering.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Núcleo Pulposo/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
13.
Eur Spine J ; 26(3): 799-805, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27007994

RESUMEN

PURPOSE: Fresh-frozen intervertebral disc (IVD) allograft transplantation has been successfully performed in the human cervical spine. Whether this non-fusion technology could truly decrease adjacent segment disease is still unknown. This study evaluated the long-term mobility of the IVD-transplanted segment and the impact on the adjacent spinal segments in a goat model. METHODS: Twelve goats were used. IVD allograft transplantation was performed at lumbar L4/L5 in 5 goats; the other 7 goats were used as the untreated control (5) and for the supply of allografts (2). Post-operation lateral radiographs of the lumbar spine in the neutral, full-flexion and full-extension positions were taken at 1, 3, 6, 9 and 12 months. Disc height (DH) of the allograft and the adjacent levels was calculated and range of motion (ROM) was measured using the Cobb's method. The anatomy of the adjacent discs was observed histologically. RESULTS: DH of the transplanted segment was decreased significantly after 3 months but no further reduction was recorded until the final follow-up. No obvious alteration was seen in the ROM of the transplanted segment at different time points with the ROM at 12 months being comparable to that of the untreated control. The DH and ROM in the adjacent segments were well maintained during the whole observation period. At post-operative 12 months, the ROM of the adjacent levels was similar to that of the untreated control and the anatomical morphology was well preserved. CONCLUSIONS: Lumbar IVD allograft transplantation in goats could restore the segmental mobility and did not negatively affect the adjacent segments after 12 months.


Asunto(s)
Aloinjertos , Disco Intervertebral , Vértebras Lumbares/cirugía , Aloinjertos/cirugía , Aloinjertos/trasplante , Animales , Cabras , Disco Intervertebral/cirugía , Disco Intervertebral/trasplante , Rango del Movimiento Articular
14.
J Orthop Res ; 35(5): 1047-1057, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26697824

RESUMEN

Intervertebral disc (IVD) degeneration is the most common cause of low back pain, which affect 80% of the population during their lives, with heavy economic burden. Many factors have been demonstrated to participate in IVD degeneration. In this study, we investigated the role of short stature homeobox 2 (SHOX2) in the development of IVD degeneration. First, we detected the expression of SHOX2 in different stages of human IVD degeneration; then explored the role of SHOX2 on nucleus pulposus (NP) cells proliferation and apoptosis, finally we evaluated the effect of SHOX2 on the production of extracellular matrix in NP cells. Results showed that the expression of SHOX2 is mainly in NP compared with AF tissues, its expression decreased with the severity of human IVD degeneration. TNF-α treatment led to dose- and time-dependent decrease in SHOX2 mRNA, protein expression and promoter activity in NP cells. The silencing of SHOX2 inhibited NP cells proliferation and induced NP cells apoptosis. Finally, SHOX2 silencing led to decreased aggrecan and collagen II expression, along with increased ECM degrading enzymes MMP3 and ADAMTS-5 in NP cells. In summary, our results indicated that SHOX2 plays an important role in the process of IVD degeneration, and might be a protective factor for IVD degeneration. Further studies are required to confirm its exact role, and clarify the mechanism. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1047-1057, 2017.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envejecimiento/metabolismo , Animales , Apoptosis , Proliferación Celular , Matriz Extracelular/metabolismo , Cultivo Primario de Células , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
15.
Sci Rep ; 6: 28038, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27292569

RESUMEN

Nucleus pulposus (NP) cells of the intervertebral disc are essential for synthesizing extracellular matrix that contributes to disc health and mechanical function. NP cells have a unique morphology and molecular expression pattern derived from their notochordal origin, and reside in N-cadherin (CDH2) positive cell clusters in vivo. With disc degeneration, NP cells undergo morphologic and phenotypic changes including loss of CDH2 expression and ability to form cell clusters. Here, we investigate the role of CDH2 positive cell clusters in preserving healthy, biosynthetically active NP cells. Using a laminin-functionalized hydrogel system designed to mimic features of the native NP microenvironment, we demonstrate NP cell phenotype and morphology is preserved only when NP cells form CDH2 positive cell clusters. Knockdown (CRISPRi) or blocking CDH2 expression in vitro and in vivo results in loss of a healthy NP cell. Findings also reveal that degenerate human NP cells that are CDH2 negative can be promoted to re-express CDH2 and healthy, juvenile NP matrix synthesis patterns by promoting cell clustering for controlled microenvironment conditions. This work also identifies CDH2 interactions with ß-catenin-regulated signaling as one mechanism by which CDH2-mediated cell interactions can control NP cell phenotype and biosynthesis towards maintenance of healthy intervertebral disc tissues.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Técnicas de Cultivo de Célula/métodos , Núcleo Pulposo/citología , Adolescente , Adulto , Anciano , Animales , Comunicación Celular , Células Cultivadas , Niño , Técnicas de Silenciamiento del Gen , Humanos , Persona de Mediana Edad , Núcleo Pulposo/metabolismo , Fenotipo , Transducción de Señal , Porcinos , Adulto Joven , beta Catenina/metabolismo
16.
J Orthop Res ; 34(5): 763-70, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26496668

RESUMEN

Transforming growth factor-ß (TGF-ß) has been demonstrated as a potential therapeutic target in osteoarthritis. However, beneficial effects of TGF-ß supplement and inhibition have both been reported, suggesting characterization of the spatiotemporal distribution of TGF-ß during the whole time course of osteoarthritis is important. To investigate the activity of TGF-ß in osteoarthritis progression, we collected knee joints from Dunkin-Hartley (DH) guinea pigs at 3, 6, 9, and 12-month old (n = 8), which develop spontaneous osteoarthritis in a manner extraordinarily similar to humans. Via histology and micro-computed tomography (CT) analysis, we found that the joints exhibited gradual cartilage degeneration, subchondral plate sclerosis, and elevated bone remodeling during aging. The degenerating cartilage showed a progressive switch of the expression of phosphorylated Smad2/3 to Smad1/5/8, suggesting dual roles of TGF-ß/Smad signaling during chondrocyte terminal differentiation in osteoarthritis progression. In subchondral bone, we found that the locations and age-related changes of osterix(+) osteoprogenitors were in parallel with active TGF-ß, which implied the excessive osteogenesis may link to the activity of TGF-ß. Our study, therefore, suggests an association of cartilage degeneration and excessive bone remodeling with altered TGF-ß signaling in osteoarthritis progression of DH guinea pigs. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:763-770, 2016.


Asunto(s)
Huesos/patología , Cartílago Articular/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Factor de Crecimiento Transformador beta/metabolismo , Envejecimiento/patología , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Remodelación Ósea , Femenino , Cobayas , Masculino , Proteínas Smad/metabolismo
17.
Curr Stem Cell Res Ther ; 11(6): 505-512, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25429703

RESUMEN

Intervertebral disc degeneration is a common spinal disorder and may manifest with low back pain or sciatica. The degeneration is characterized by the loss of extracellular matrix integrity and dehydration in the nucleus pulposus. This compromises the viscoelastic property and compressive strength of the disc and therefore the capacity to withstand axial load, eventually causing the disc to collapse or leading to disc bulging or herniation due to abnormal strains on the surrounding annulus. Mesenchymal stem/stromal cells (MSCs) are attractive cell sources for engineering or repair of the disc tissues with respect to their ease of availability and capacity to expand in vitro. Moreover, recent investigations have proposed a potential of MSCs to differentiate into disc-like cells. This review discusses the approaches and concerns for engineering intervertebral disc through manipulating MSCs, with a highlight on the relevance of disc progenitor discovery. Ultimately, stem cell-based engineering of intervertebral disc may facilitate the preservation of motion segment function and address degenerative disc disease in future without spinal fusion.

18.
J Orthop Res ; 33(12): 1743-55, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26036782

RESUMEN

Differences in matrix compositions in human nucleus pulposus (NP) clinical samples demand different cell isolation protocols for optimal results but there is no clear guide about this to date. Sub-optimal protocols may result in low cell yield, limited reliability of results or even failure of experiments. Cell yield, viability and attachment of cells isolated from bovine NP tissue with different protocols were estimated by cell counting, Trypan blue staining and cell culturing respectively. RNA was extracted from isolated cells and quantified by Nanodrop spectrometry and RT-qPCR. Higher collagenase concentration, longer digestion duration and pronase pre-treatment increased the cell yield. Cell viability remained high (<5% dead cells) even after 0.2% collagenase treatment for overnight. NP cells remained to have high ACAN, COL2A1, CDH2, KRT18, and KRT19 expression compared to muscle cells for different cell isolation conditions tested. Digestion by collagenase alone without the use of pronase could isolate cells from human degenerated NP tissue but clusters of cells were observed. We suggest the use of the disappearance of tissue as an indirect measure of cells released. This study provides a guide for researchers to decide the parameters involved in NP cell isolation for optimal outcome.


Asunto(s)
Técnicas de Cultivo de Célula , Disco Intervertebral/citología , Adulto , Anciano , Agrecanos/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Bovinos , Adhesión Celular , Supervivencia Celular , Colágeno Tipo II/metabolismo , Colagenasas/metabolismo , Femenino , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Queratina-18/metabolismo , Queratina-19/metabolismo , Masculino , Pronasa/metabolismo , ARN/metabolismo , Ratas , Reproducibilidad de los Resultados
19.
Ageing Res Rev ; 19: 8-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25446806

RESUMEN

The skin is the body's largest organ and it is able to self-repair throughout an individual's life. With advanced age, skin is prone to degenerate in response to damage. Although cosmetic surgery has been widely adopted to rejuvinate skin, we are far from a clear understanding of the mechanisms responsible for skin aging. Recently, adult skin-resident stem/progenitor cells, growth arrest, senescence or apoptotic death and dysfunction caused by alterations in key signaling genes, such as Ras/Raf/MEK/ERK, PI3K/Akt-kinases, Wnt, p21 and p53, have been shown to play a vital role in skin regeneration. Simultaneously, enhanced telomere attrition, hormone exhaustion, oxidative stress, genetic events and ultraviolet radiation exposure that result in severe DNA damage, genomic instability and epigenetic mutations also contribute to skin aging. Therefore, cell replacement and targeting of the molecular systems found in skin hold great promise for controlling or even curing skin aging.


Asunto(s)
Envejecimiento/fisiología , Transducción de Señal/fisiología , Piel/crecimiento & desarrollo , Células Madre/fisiología , Adulto , Anciano , Humanos , Fenómenos Fisiológicos de la Piel , Acortamiento del Telómero/fisiología
20.
Anal Biochem ; 465: 179-86, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25132565

RESUMEN

We report a computational method based on ultraviolet (UV) spectra for correcting the overestimated concentrations of nucleic acid samples contaminated with TRIzol/phenol. The derived correction formulas were validated using RNA solutions, double-stranded DNA solutions, and single-stranded oligonucleotide solutions. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) with SYBR Green was performed to assess the level of TRIzol contamination that can be tolerated for gene expression quantification. After the correction, the accuracy of the RNA concentrations was greatly improved and there was no significant difference in the threshold cycle (Ct) values for GAPDH and ACAN genes in RT-qPCR obtained for RNA contaminated with up to 0.1% TRIzol (phenol level index [PLI]∼5.8-5.9). Similarly, accuracy improvements were also observed for DNA or oligonucleotides contaminated with phenol using different concentration correction formulas. In addition, the Ct values and amplification efficiency of DNA in qPCR were not affected by TRIzol contamination below 1%. This computational method is easy and convenient to use and reduces the concentration overestimations greatly.


Asunto(s)
ADN/análisis , Guanidinas/química , Fenoles/química , ARN/análisis , Animales , Bovinos , ADN/química , ADN/aislamiento & purificación , Humanos , Ratones , ARN/química , ARN/aislamiento & purificación , Espectrofotometría Ultravioleta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...