Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging ; 7(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34821874

RESUMEN

Over recent years, deep learning methods have become an increasingly popular choice for solving tasks from the field of inverse problems. Many of these new data-driven methods have produced impressive results, although most only give point estimates for the reconstruction. However, especially in the analysis of ill-posed inverse problems, the study of uncertainties is essential. In our work, we apply generative flow-based models based on invertible neural networks to two challenging medical imaging tasks, i.e., low-dose computed tomography and accelerated medical resonance imaging. We test different architectures of invertible neural networks and provide extensive ablation studies. In most applications, a standard Gaussian is used as the base distribution for a flow-based model. Our results show that the choice of a radial distribution can improve the quality of reconstructions.

2.
J Imaging ; 7(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-34460700

RESUMEN

The reconstruction of computed tomography (CT) images is an active area of research. Following the rise of deep learning methods, many data-driven models have been proposed in recent years. In this work, we present the results of a data challenge that we organized, bringing together algorithm experts from different institutes to jointly work on quantitative evaluation of several data-driven methods on two large, public datasets during a ten day sprint. We focus on two applications of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods using standardized settings. As a general result, we observe that the deep learning-based methods are able to improve the reconstruction quality metrics in both CT applications while the top performing methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). We further discuss a number of other important criteria that should be taken into account when selecting a method, such as the availability of training data, the knowledge of the physical measurement model and the reconstruction speed.

3.
Sci Data ; 8(1): 109, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863917

RESUMEN

Deep learning approaches for tomographic image reconstruction have become very effective and have been demonstrated to be competitive in the field. Comparing these approaches is a challenging task as they rely to a great extent on the data and setup used for training. With the Low-Dose Parallel Beam (LoDoPaB)-CT dataset, we provide a comprehensive, open-access database of computed tomography images and simulated low photon count measurements. It is suitable for training and comparing deep learning methods as well as classical reconstruction approaches. The dataset contains over 40000 scan slices from around 800 patients selected from the LIDC/IDRI database. The data selection and simulation setup are described in detail, and the generating script is publicly accessible. In addition, we provide a Python library for simplified access to the dataset and an online reconstruction challenge. Furthermore, the dataset can also be used for transfer learning as well as sparse and limited-angle reconstruction scenarios.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Aprendizaje Profundo , Humanos , Dosis de Radiación
4.
Bioinformatics ; 35(11): 1940-1947, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395171

RESUMEN

MOTIVATION: Non-negative matrix factorization (NMF) is a common tool for obtaining low-rank approximations of non-negative data matrices and has been widely used in machine learning, e.g. for supporting feature extraction in high-dimensional classification tasks. In its classical form, NMF is an unsupervised method, i.e. the class labels of the training data are not used when computing the NMF. However, incorporating the classification labels into the NMF algorithms allows to specifically guide them toward the extraction of data patterns relevant for discriminating the respective classes. This approach is particularly suited for the analysis of mass spectrometry imaging (MSI) data in clinical applications, such as tumor typing and classification, which are among the most challenging tasks in pathology. Thus, we investigate algorithms for extracting tumor-specific spectral patterns from MSI data by NMF methods. RESULTS: In this article, we incorporate a priori class labels into the NMF cost functional by adding appropriate supervised penalty terms. Numerical experiments on a MALDI imaging dataset confirm that the novel supervised NMF methods lead to significantly better classification accuracy and stability as compared with other standard approaches. AVAILABILITY AND IMPLEMENTATON: https://gitlab.informatik.uni-bremen.de/digipath/Supervised_NMF_Methods_for_MALDI.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Humanos , Aprendizaje Automático , Neoplasias , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA