Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 53: 110170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38439990

RESUMEN

These datasets contain measures from multi-modal data sources. They include objective and subjective measures commonly used to determine cognitive states of workload, situational awareness, stress, and fatigue using data collection tools such as NASA-TLX, SART, eye tracking, EEG, Health Monitoring Watch, a survey to assess training, and a think-aloud situational awareness assessment following the SPAM methodology. Also, data from a simulation formaldehyde production plant based on the interaction of the participants in a controlled control room experimental setting is included. The interaction with the plant is based on a human-in-the-loop alarm handling and process control task flow, which includes Monitoring, Alarm Handling, Recovery planning, and intervention (Troubleshooting, Control and Evaluation). Data was collected from 92 participants, split into four groups while they underwent the described task flow. Each participant tested three scenarios lasting 15-18 min with a -10-min survey completion and break period in between using different combinations of decision support tools. The decision support tools tested and varied for each group include alarm prioritisation vs. none, paper-based vs. Digitised screen-based procedures, and an AI recommendation system. This is relevant to compare current practices in the industry and the impact on operators' performance and safety. It is also applicable to validate proposed solutions for the industry. A statistical analysis was performed on the dataset to compare the outcomes of the different groups. Decision-makers can use these datasets for control room design and optimisation, process safety engineers, system engineers, human factors engineers, all in process industries, and researchers in similar or close domains.

2.
Brain Sci ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391724

RESUMEN

While the term task load (TL) refers to external task demands, the amount of work, or the number of tasks to be performed, mental workload (MWL) refers to the individual's effort, mental capacity, or cognitive resources utilized while performing a task. MWL in multitasking scenarios is often closely linked with the quantity of tasks a person is handling within a given timeframe. In this study, we challenge this hypothesis from the perspective of electroencephalography (EEG) using a deep learning approach. We conducted an EEG experiment with 50 participants performing NASA Multi-Attribute Task Battery II (MATB-II) under 4 different task load levels. We designed a convolutional neural network (CNN) to help with two distinct classification tasks. In one setting, the CNN was used to classify EEG segments based on their task load level. In another setting, the same CNN architecture was trained again to detect the presence of individual MATB-II subtasks. Results show that, while the model successfully learns to detect whether a particular subtask is active in a given segment (i.e., to differentiate between different subtasks-related EEG patterns), it struggles to differentiate between the two highest levels of task load (i.e., to distinguish MWL-related EEG patterns). We speculate that the challenge comes from two factors: first, the experiment was designed in a way that these two highest levels differed only in the quantity of work within a given timeframe; and second, the participants' effective adaptation to increased task demands, as evidenced by low error rates. Consequently, this indicates that under such conditions in multitasking, EEG may not reflect distinct enough patterns to differentiate higher levels of task load.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...