Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38663404

RESUMEN

BACKGROUND: Crohn's disease complicated by perianal fistulae is more prevalent and severe in patients of African ancestry. METHODS: We profiled single cells from diverse patients with Crohn's disease with perianal fistula from colorectal mucosa and fistulous tracts. Immunofluorescence was performed to validate predicted cell-cell interactions. Unstimulated monocytes were chronically cultured in diverse cohorts. A subset was analyzed by single-nucleus RNA + ATAC sequencing. FINDINGS: Fistulous tract cells from complete proctectomies demonstrated enrichment of myeloid cells compared to paired rectal tissues. Ligand-receptor analysis highlights myeloid-stromal cross-talk and cellular senescence, with cellular co-localization validated by immunofluorescence. Chitinase-3 like-protein-1 (CHI3L1) is a top upregulated gene in stromal cells from fistulae expressing both destructive and fibrotic gene signatures. Monocyte cultures from patients of African ancestry and controls demonstrated differences in CHI3L1 and oncostatin M (OSM) expression upon differentiation compared to individuals of European ancestry. Activating protein-1 footprints are present in ATAC-seq peaks in stress response genes, including CHI3L1 and OSM; genome-wide chromatin accessibility including JUN footprints was observed, consistent with reported mechanisms of inflammatory memory. Regulon analyses confirm known cell-specific transcription factor regulation and implicate novel ones in fibroblast subsets. All pseudo-bulked clusters demonstrate enrichment of genetic loci, establishing multicellular contributions. In the most significant African American Crohn's genetic locus, upstream of prostaglandin E receptor 4, lymphoid-predominant ATAC-seq peaks were observed, with predicted RORC footprints. CONCLUSIONS: Population differences in myeloid-stromal cross-talk implicate fibrotic and destructive fibroblasts, senescence, epigenetic memory, and cell-specific enhancers in perianal fistula pathogenesis. The transcriptomic and epigenetic data provided here may guide optimization of promising mesenchymal stem cell therapies for perianal fistula. FUNDING: This work was supported by grants U01DK062422, U24DK062429, and R01DK123758.

2.
Gastroenterology ; 160(5): 1546-1557, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33359885

RESUMEN

BACKGROUND AND AIMS: Polygenic risk scores (PRS) may soon be used to predict inflammatory bowel disease (IBD) risk in prevention efforts. We leveraged exome-sequence and single nucleotide polymorphism (SNP) array data from 29,358 individuals in the multiethnic, randomly ascertained health system-based BioMe biobank to define effects of common and rare IBD variants on disease prediction and pathophysiology. METHODS: PRS were calculated from European, African American, and Ashkenazi Jewish (AJ) reference case-control studies, and a meta-GWAS run using all three association datasets. PRS were then combined using regression to assess which combination of scores best predicted IBD status in European, AJ, Hispanic, and African American cohorts in BioMe. Additionally, rare variants were assessed in genes associated with very early-onset IBD (VEO-IBD), by estimating genetic penetrance in each BioMe population. RESULTS: Combining risk scores based on association data from distinct ancestral populations improved IBD prediction for every population in BioMe and significantly improved prediction among European ancestry UK Biobank individuals. Lower predictive power for non-Europeans was observed, reflecting in part substantially lower African IBD case-control reference sizes. We replicated associations for two VEO-IBD genes, ADAM17 and LRBA, with high dominant model penetrance in BioMe. Autosomal recessive LRBA risk alleles are associated with severe, early-onset autoimmunity; we show that heterozygous carriage of an African-predominant LRBA protein-altering allele is associated with significantly decreased LRBA and CTLA-4 expression with T-cell activation. CONCLUSIONS: Greater genetic diversity in African populations improves prediction across populations, and generalizes some VEO-IBD genes. Increasing African American IBD case-collections should be prioritized to reduce health disparities and enhance pathophysiological insight.


Asunto(s)
Negro o Afroamericano/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Hispánicos o Latinos/genética , Judíos/genética , Herencia Multifactorial , Penetrancia , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Edad de Inicio , Estudios de Casos y Controles , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/etnología , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/etnología , Europa (Continente)/epidemiología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Prevalencia , Factores Raciales , Medición de Riesgo , Factores de Riesgo , Estados Unidos/epidemiología
3.
Nat Rev Immunol ; 20(10): 591, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32807862
4.
Immunity ; 52(6): 910-941, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32505227

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Animales , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Memoria Inmunológica , Inflamación/inmunología , Inflamación/virología , Linfocitos/inmunología , Células Mieloides/inmunología , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2
5.
Nat Rev Immunol ; 20(6): 350, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286537
6.
Hum Mol Genet ; 22(16): 3227-38, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595883

RESUMEN

In Huntington's disease (HD), the size of the expanded HTT CAG repeat mutation is the primary driver of the processes that determine age at onset of motor symptoms. However, correlation of cellular biochemical parameters also extends across the normal repeat range, supporting the view that the CAG repeat represents a functional polymorphism with dominant effects determined by the longer allele. A central challenge to defining the functional consequences of this single polymorphism is the difficulty of distinguishing its subtle effects from the multitude of other sources of biological variation. We demonstrate that an analytical approach based upon continuous correlation with CAG size was able to capture the modest (∼21%) contribution of the repeat to the variation in genome-wide gene expression in 107 lymphoblastoid cell lines, with alleles ranging from 15 to 92 CAGs. Furthermore, a mathematical model from an iterative strategy yielded predicted CAG repeat lengths that were significantly positively correlated with true CAG allele size and negatively correlated with age at onset of motor symptoms. Genes negatively correlated with repeat size were also enriched in a set of genes whose expression were CAG-correlated in human HD cerebellum. These findings both reveal the relatively small, but detectable impact of variation in the CAG allele in global data in these peripheral cells and provide a strategy for building multi-dimensional data-driven models of the biological network that drives the HD disease process by continuous analysis across allelic panels of neuronal cells vulnerable to the dominant effects of the HTT CAG repeat.


Asunto(s)
Expresión Génica , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Repeticiones de Trinucleótidos/genética , Edad de Inicio , Alelos , Línea Celular , Cerebelo/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/metabolismo , Masculino , Modelos Genéticos , Polimorfismo Genético , Reproducibilidad de los Resultados , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...